数与式专题(2)
- 格式:doc
- 大小:364.61 KB
- 文档页数:6
挑战2023年中考数学选择、填空压轴真题汇编专题02数与式和方程的压轴真题训练一.整式的加减(共2小题)1.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y ﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n =x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.2.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】D【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.二.多项式乘多项式(共1小题)3.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4【答案】B【解答】解:方法1、∵m2+n2=2+mn,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn=5(mn+2)﹣12mn=10﹣7mn,∵m2+n2=2+mn,∴(m+n)2=2+3mn≥0(当m+n=0时,取等号),∴mn≥﹣,∴(m﹣n)2=2﹣mn≥0(当m﹣n=0时,取等号),∴mn≤2,∴﹣≤mn≤2,∴﹣14≤﹣7mn≤,∴﹣4≤10﹣7mn≤,即(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为,故选:B.方法2、设m+n=k,则m2+2mn+n2=k2,∴mn+2+2mn=k2,∴mn=k2﹣,∴原式=10﹣7mn=﹣k2+≤,故选:B.三.零指数幂(共1小题)4.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.0【答案】C【解答】解:原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.四.有理数的乘方(共1小题)5.(2022•长沙)当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).【答案】DDDD【解答】解:(1)∵2200就是200个2相乘,∴YYDS(永远的神)的说法正确;∵2200就是200个2相乘,2002是2个200相乘,∴2200不等于2002,∴DDDD(懂的都懂)说法不正确;∵21=2,22=4,23=8,24=16,25=32,…,∴2n的尾数2,4,8,6循环,∵200÷4=50,∴2200的个位数字是6,∴JXND(觉醒年代)说法正确;∵210=1024,103=1000,∴2200=(210)20=(1024)20,1060=(103)20=100020,∵1024>1000,∴2200>1060,∴QGYW(强国有我)说法正确;故答案为:DDDD.五.二元一次方程组的应用(共1小题)6.(2022•武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解答】解:∵每一横行、每一竖列以及两条对角线上的3个数之和相等,∴最左下角的数为:6+20﹣22=4,∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,∴,解得:,∴x+y=12,故选:D.六.高次方程(共1小题)7.(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.【答案】4:3【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y 元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.七.分式方程的解(共2小题)8.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.20【答案】A【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.9.(2022•德阳)如果关于x的方程=1的解是正数,那么m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m<﹣D.m<﹣1且m≠﹣2【答案】D【解答】解:两边同时乘(x﹣1)得,2x+m=x﹣1,解得:x=﹣1﹣m,又∵方程的解是正数,且x≠1,∴,即,解得:,∴m的取值范围为:m<﹣1且m≠﹣2.故答案为:D.10.(2021•达州)若分式方程﹣4=的解为整数,则整数a=.【答案】±1【解答】解:方程两边同时乘以(x+1)(x﹣1)得(2x﹣a)(x+1)﹣4(x+1)(x﹣1)=(x﹣1)(﹣2x+a),整理得﹣2ax=﹣4,整理得ax=2,∵x,a为整数,∴a=±1或a=±2,∵x=±1为增根,∴a≠±2,∴a=±1.故答案为:±1.11.(2020•大庆)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.【答案】3【解答】解:∵x2﹣2x﹣a=0,∴Δ=4+4a,∴①当a>﹣1时,Δ>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④当a>3时,由(3)可知,两个实根一个大于3,另一个小于3,故④正确,故答案为3.12.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x ﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.【答案】x=2或x=﹣1+或x=﹣1﹣【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.。
专题01 数与式的运算知识梳理在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.知识结构模块一绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.【例1】解不等式:13x x -+->4.【难度】★★【答案】0<x 或4>x【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间典例剖析的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【难度】★★【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值;(4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB,当A、B两点中一点在原点时,不妨设点A在原点,如图1,babOBAB-===;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边baababOAOBAB-=-=-=-=;②如图3,点A、B都在原点的左边()baababOAOBAB-=---=-=-=;③如图4,点A、B在原点的两边()bababaOBOAAB-=-+=+=+=.综上,数轴上A、B两点之间的距离baAB-=.(2)回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;②数轴上表示x和-1的两点A和B之间的距离是,如果2=AB,那么x为;③当代数式21-++xx取最小值时,相应的x的取值范围是;④求1997321-+⋅⋅⋅+-+-+-xxxx的最小值.【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x;④找到1~1997的中间数999,当x=999时取得最小值,最小值是998+997+....+2+1+0+1+2+. (998)()299899812⨯+⨯=997002.对点精练1.解绝对值方程:3xx.-x-2=1--【难度】★★【答案】4x=【解析】分类讨论:x<1,1≤x<2,x≥2,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.解:当x<1时,原方程等价于1﹣x﹣(2﹣x)=x﹣3.解得x=2(不符合范围,舍);当1≤x<2时,原方程等价于x﹣1﹣(2﹣x)=x﹣3.解得x=0(不符合范围,舍);当x≥2时,原方程等价于x﹣1﹣(x﹣2)=x﹣3.解得x=4,综上所述:x=4.本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,此外也可以通过数形结合来解题.模块二乘法公式(1)平方差公式22+-=-;()()a b a b a b(2)完全平方公式222±=±+;a b a ab b()2(3)立方和公式2233+-+=+;()()a b a ab b a b(4)立方差公式2233-++=-;a b a ab b a b()()(5)三数和平方公式2222()2()++=+++++;a b c a b c ab bc ac(6)两数和立方公式33223+=+++;a b a a b ab b()33(7)两数差立方公式33223-=-+-.a b a a b ab b()33引申:n次方差公式;()()()()()()322344223322=-+++-=-++-=-+-=-n n b a b ab b a a b a b a b ab a b a b a b a b a b a 根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数) 这个公式称为n 次方差公式;由这个公式易得())(n n b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++;(2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a .【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x典例剖析222222111()(2)()2(2)22(2)333x x x x x x =+-++-+⨯+⨯⨯-432822122339x x x x =-+-+. (4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++;(2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++=22(68)(58)x x x x ++++=2(2)(4)(58)x x x x ++++(2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++--=22226(1)7(1)36x x x x -+--=22[2(1)3][3(1)8]x x x x ---+=22(232)(383)x x x x --+-=(21)(2)(31)(3)x x x x +--+.对点精练1.已知335252-++=x ,求533-+x x 的值.【难度】★★【答案】1-【解析】()()()()()1552525131353333531152,52,52,52332233333333-=-++-=-+++++=-+++++=-+++=-=⇒-=⇒+=-==+=-ab b ab a b a b a ab b a b a b a b a ab ab b a b a 原式即令2.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.【难度】★★★【答案】9【解析】()()()()[]()()()()9123333310812963222222222233333333=-+∴=-++++-++++-+=-+-++++-+=+---+=+-+=+=+-+z y x xy yz xz z y x xyyz xz z y x z y x z y x xy z y x z y x z y x xyz xy y x z y x xyzz y x xyz z y x 解:3.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【难度】★★【答案】令a x y =+,b xy =,则原式=2(1)(2)(2)b a a b -+--=221222a b a b ab ++-+-=2(1)a b --=2(1)x y xy +--=2[(1)(1)]x y ---=22(1)(1)x y --1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程.2、二次根式2a 的意义 2a a ==,0,,0.a a a a ≥⎧⎨-<⎩【例7】试比较下列各组数的大小:(1)1211-和1110-; (2)264+和226-. 【难度】★★【答案】见解析【解析】(1)∵1211(1211)(1211)11211112111211--+-===++, 模块三:二次根典例剖析===,>,∴(2)∵===∴6+4>6+22,<【例8】化简:(1(21)<<.x【难度】★★【答案】见解析【解析】(1)原式====.2=2(2)原式1=-,xx∵01<<,x∴11x>>,x所以,原式=1x-.x【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n nD .1111+--n n 【难度】★★ 【答案】C【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
第一单元 数与式专题02整式的运算与因式分解(测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•金东区期中)下列说法中,正确的是( )A .−2ab 3的系数是﹣2B .32ab 3的次数是6次C .a 2+a ﹣1的常数项是1D .a+b 3是多项式2.(2022春•杭州期中)下列计算正确的是( )A .26÷23=22B .a 3•a 4=a 12C .(﹣3)2×(﹣3)3=35D .x 3•x 5=x 83.(2022春•鹿城区校级期中)下列计算结果正确的是( )A .a 3+a 3=a 6B .(﹣2x )3=﹣6x 3C .2﹣2=﹣4D .(﹣23)4=2124.(2022•下城区校级二模)化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .﹣4a5.(2022•金华模拟)下列各式能用公式法因式分解的是( )A .14x 2﹣xy +y 2B .x 2+2xy ﹣y 2C .x 2+xy +y 2D .﹣x 2﹣y 26.(2022春•鹿城区校级期中)已知a ,b 为常数,若(x ﹣1)2+bx +c =x 2﹣ax +16,则a +b +c 的值为( )A .18B .17C .16D .157.(2022春•海曙区校级期中)若m ,n 均是正整数,且2m +1×4n =128,则m +n 的所有可能值为( )A .2或3B .3或4C .5或4D .6或58.(2022•萧山区校级一模)已知代数式(x ﹣x 1)(x ﹣x 2)+mx +n 化简后为一个完全平方式,且当x =x 1时此代数式的值为0,则下列式子中正确的是( )A .x 1﹣x 2=mB .x 2﹣x 1=mC .m (x 1﹣x 2)=nD .mx 1+n =x 29.(2022•下城区校级二模)已知两个非负实数a,b满足2a+b=3,3a+b﹣c=0,则下列式子正确的是()A.a﹣c=3B.b﹣2c=9C.0≤a≤2D.3≤c≤4.510.(2022春•江干区校级期中)如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知a,b满足b=32a,则图②中阴影部分的面积满足的关系式为()A.S1=4S2B.S1=6S2C.S1=8S2D.S1=10S2二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022•海曙区校级模拟)因式分解:(a+b)2﹣9b2=.12.(2022•余姚市一模)已知x2﹣2x=3,则3x2﹣6x﹣4的值为.13.(2022•镇海区一模)当x=5,y=35时,代数式(x+y)2﹣(x﹣y)2的值是.14.(2021•宁波模拟)已知(2x+y)2=58,(2x﹣y)2=18,则xy=.15.(2021•江干区模拟)设M=x+y,N=x﹣y,P=xy.若M=99,N=98,则P=.16.(2021•宁波模拟)如图都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有7个小圆圈,第②个图形中一共有13个小圆圈,第③个图形中一共有21个小圆,…,按此规律排列,则第⑩个图形中小圆圈的个数为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•温州二模)(1)计算:20120+√12−4×sin60°;(2)化简:(3+a)(3﹣a)+a(a﹣4).18.(2021•嘉兴一模)(1)计算:√83−√4+20210.(2)因式分解:x3﹣2x2+x.19.(2022•上城区校级二模)已知a+b=8,ab=1,请求出a2+b2与a﹣b的值.20.(2022春•江干区校级期中)先化简,再求值:(1)(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=1;(2)已知y2﹣5y+3=0,求2(y﹣1)(2y﹣1)﹣2(y+1)2+7的值.21.(2019•宁波模拟)如图,大小不一的两个等腰直角三角形用两种方法摆放,其中AB=a,CD=b.设两个三角形的直角边长分别为x和y(x>y>0),图中阴影部分面积为S.(1)用x,y表示S;(2)将(1)中的等式等号右边的代数式因式分解;(3)求S(用a,b表示).22.(2022春•杭州期中)如图所示,有一块边长为(3a+b)米和(a+2b)米的长方形土地,现准备在这块土地上修建一个长为(2a+b)米,宽为(a+b)米的游泳池,剩余部分修建成休息区域.(1)请用含a和b的代数式表示休息区域的面积;(结果要化简)(2)若a=5,b=10,求休息区域的面积:(3)若游泳池面积和休息区域的面积相等,且a≠0,求此时游泳池的长与宽的比值.23.(2020•宁波模拟)【建立模型】问题1 找规律:1,4,7,10,13,16,则第n个数是_____.分析建模:相邻的两个数中,后一个数减去前一个数的差都相等,具有这样规律的问题称为一次等差问题,可用一次函数来解决.我们设第一个数为a1,第n个数为a n,则有a n=a1+(n﹣1)d,其中d为后一个数减去前一个数的差.如问题1的答案为3n﹣2.问题2 找规律:1,4,10,19,31,46,64,…则第n个数是_____.分析建模:相邻的两个数中,后一个数减去前一个数的差并不相等,但再用后一个差减去前一个差所得到的第二次的差都相等.具有这样规律问题称为二次等差问题,可用二次函数来解决,我们设第一个数为a 1,第n 个数为a n ,则有a n =an 2+bn +c ,然后将前三个数代入,通过解方程组可求得a ,b ,c 的值.如问题2的答案为32n 2−32n +1. 【解答问题】(1)找规律:﹣47,﹣34,﹣21,﹣8,5,18,…,则第n 个数是 .(2)找规律:﹣12,﹣10,﹣6,0,8,18,…,则第n 个数是 .(3)第(1)题中的第n 个数和第(2)题中的第n 个数会相同吗?如果有可能相同,请求出n 的值;如果不可能相同,请说明理由.(4)若第(1)题中的第n 个数大于第(2)题中的第n 个数,则n = ;若第(1)题中的第n 个数小于第(2)题中的第n 个数,则n 的取值范围为 .。
数与式一.实数(一)知识点1.数的分类0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数——无线不循环小数0⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正数有理数正数分数无理数实数整数有理数负数分数无理数 2.有关概念:实数、有理数、无理数、数轴、相反数、绝对值、倒数、自然数、平方根、算术平方根、立方根、二次根式、最简二次根式、同类二次根式、分母有理化(1)实数:有理数和无理数统称为实数 (2)有理数:整数和分数统称为有理数(3)无理数:无限不循环的小数叫无理数。
如:1.413……,π,带√且开方开不尽的数。
(4)数轴:规定原点、正方向、单位长度的直线。
(5)相反数:只有符号不同的两个数(6)绝对值:在数轴上表示数a 的点到原点的距离叫做数a 的绝对值。
绝对值意义:一个正数的绝对值等于它本身; 一个负数的绝对值等于它的相反数;零的绝对值等于零。
即|a |={a (a >0)0(a =0)−a (a <0)(7)倒数:如果两个数的积等于1,那么这两个数互为倒数(0没有倒数) (8)自然数:非负整数,如:0、1、2、3、4、……(9)平方根、算术平方根:如果x 2=a ,那么x 叫做a 的平方根。
其中x =±√a ,√a 叫非负数a 的算术平方根平方根意义:一个正数有两个平方根,它们互为相反数;负数没有平方根;零的平方根是零。
的相反数是 .3.若m、n 互为相反数,则5m+5n-5= .4.2-的相反数是( )A .2B .-2C .4D . 考点二:绝对值 1.|−2|的值是( )A .-2B .2C .12 D .-122.若|m −3|+(n +2)2=0,则m+2n 的值为( )A .4-B .1-C .0D .43.23-的值是4.计算:2247)π-+-+=5.若√2x −y +|y +2|=0,求代数式[(x −y)2+(x +y )(x −y)]÷2x 的值考点三:倒数 1.-8的倒数是( )A .8B .-8C .18 D .- 182.若m 、n 互为倒数,则m n 2−(n −1)的值为 .考点四:数轴1.如图,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为 -1,则点B 所对应的数为( ).2.实数a 、b 在数轴上的位置如图所示,则化简代数式|a +b |−a 的结果是( )A .2a+bB .2aC .aD .b3.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .a+b >0B .ab >0C .a-b >0D .|a |−|b |>0 B A b -1 0 a 1考点五:科学记数法:将一个数字表示成10na ⨯的形式,其中010a ≤<,n 表示整数,这种记数方法叫科学记数法。
第一部分 数与式专题02 整式加减及其运算(6大考点) 核心考点一 列代数式及代数式求值核心考点二 整式的有关概念及运算核心考点三 乘法公式的应用核心考点四 整式的化简求值核心考点五 因式分解核心考点核心考点六 规律探索题新题速递核心考点一 列代数式及代数式求值例1 (2022·贵州六盘水·中考真题)已知()443223412345x y a x a x y a x y a xy a y +=++++,则12345a a a a a ++++的值是( )A .4B .8C .16D .12例2 (2022·广西·中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=´-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.例3 (2022·贵州六盘水·中考真题)如图,学校劳动实践基地有两块边长分别为a ,b 的正方形秧田A ,B,其中不能使用的面积为M .(1)用含a ,M 的代数式表示A 中能使用的面积___________;(2)若10a b +=,5a b -=,求A 比B 多出的使用面积.代数式及求值(1)概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示已知量的字母表示出所求量的过程;(3)代数式求值:把已知字母的值代入代数式中,并按原来的运算顺序计算求值.【变式1】(2022·山东济宁·三模)若m n ,是方程22470x x --=的两个根,则223m m n -+的值为( )A .9B .8C .7D .5【变式2】(2022·甘肃·平凉市第十中学三模)十八世纪伟大的数学家欧拉最先用记号()f x 的形式来表示关于x 的多项式,把x 等于某数n 时一的多项式的值用()f n 来表示.例如1x =时,多项式()223f x x x =-+的值可以记为()1f ,即()14f =.我们定义()32325f x ax x bx =+--.若()318f =,则()3f -的值为( )A .18-B .22-C .26D .32【变式3】(2022·浙江丽水·一模)已知,实数m ,n 满足3m n +=,2230m n mn +=-.(1)若m n >,则m n -=_______;(2)若5n p +=-,则代数式2232m p n p m mn -+-的值是______________.【变式4】(2022·福建省福州屏东中学模拟预测)已知23m n a =+,23n m a =+,且m n ¹,则代数式222m mn n ++的值是______ .【变式5】(2022·安徽芜湖·模拟预测)阅读下列材料,完成后面的问题.材料1:如果一个四位数为abcd (表示千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d 的四位数,其中a 为1~9的自然数,b ,c ,d 为0~9的自然数),我们可以将其表示为:100010010abcd a b c d =+++;材料2:把一个自然数(个位不为0)的各位数字从个位到最高位倒序排列,得到一个新的数.我们称该数为原数的兄弟数.如数“123”的兄弟数为“321”.(1)四位数55x y =______;(用含x ,y 的代数式表示)(2)设有一个两位数xy ,它的兄弟数比原数大63,请求出所有可能的数xy ;(3)求证:四位数abab 一定能被101整除.核心考点二 整式的有关概念及运算例1 (2021·四川绵阳·中考真题)整式23xy -的系数是( )A .-3B .3C .3x -D .3x 例2 (2022·湖南长沙·中考真题)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下:YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数;DDDD (懂的都懂):2002等于2200;JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大.其中对2002的理解错误的网友是___________(填写网名字母代号).例3 (2022·安徽·中考真题)观察以下等式:第1个等式:()()()22221122122´+=´+-´,第2个等式:()()()22222134134´+=´+-´,第3个等式:()()()22223146146´+=´+-´,第4个等式:()()()22224158158´+=´+-´,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.整式及有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的_次数,单项式中的数字因数叫做单项式的系数.单独的数、字母也是单项式;(2)多项式:由几个 单项式 组成的代数式叫做多项式,多项式里次数最高项的次数叫多项式的次数,一个多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做 常数项 ;(3)整式:单项式和多项式统称为整式;(4)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项;所有的常数项都是同类项.整式的运算1.同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。
中考数学专题训练:《数与式》选择题专项培优(二)1.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,﹣3,+2,则这5天他共背诵汉语成语( ) A .38个B .36个C .34个D .30个2.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n 表示第n 秒时机器人在数轴上的位置所对应的数. 给出下列结论:(1)x 3=3;(2)x 5=1;(3)x 108<x 104;(4)x 2007<x 2008; 其中,正确结论的序号是( ) A .(1)、(3) B .(2)、(3)C .(1)、(2)、(3)D .(1)、(2)、(4)3.﹣2020的绝对值是( ) A .﹣2020 B .2020 C .﹣D .4.已知a =(﹣)67,b =(﹣)68,c =(﹣)69,判断a 、b 、c 三数的大小关系为下列何者?( ) A .a >b >c B .b >a >c C .b >c >a D .c >b >a5.计算+++++……+的值为( )A .B .C .D .6.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A ﹣C 表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A ﹣C C ﹣D E ﹣D F ﹣E G ﹣FB ﹣G90米 80米﹣60米50米﹣70米40米A.210 B.130 C.390 D.﹣2107.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元8.如图,一根细长的绳子,沿中间对折,再沿对折后的中间对折,这样连续沿中间对折5次,用剪刀沿5次对折后的中间将绳子全部剪断,此时细绳被剪成()A.17段B.32段C.33段D.34段9.若(a2+2a+1)2+|1﹣b|=0,则ab的值是()A.1 B.﹣1 C.±1 D.210.如图为阿辉,小燕一起到商店分别买了数杯饮料与在家分饮料的经过.若每杯饮料的价格均相同,则根据图中的对话,判断阿辉买了多少杯饮料()A.22 B.25 C.47 D.5011.已知地球的表面积约等于5.1亿平方公里,其中水面面积约等于陆地面积的倍,则地球上陆地面积约等于(精确到0.1亿平方公里)()A.1.5亿平方公里B.2.1亿平方公里C.3.6亿平方公里D.12.5亿平方公里12.我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×10313.某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒13.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107 15.上海世博园的占地面积约为5.28km2,它面积的百万分之一相当于()A.一本数学书的面积B.一块黑板的面积C.一间教室的面积D.一个操场的面积16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.132617.若与|b+1|互为相反数,则的值为()A.B.+1 C.﹣1 D.1﹣18.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.819.已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2 C.4 D.﹣420.如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成7.2.:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.3.:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.10021.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)22.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大小关系,何者正确?()A.a>b>c B.a>c>b C.b>c>a D.c>b>a23.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<424.随地震波而来的是地底积蓄已久的能量.因为里氏震级并不像摄氏温度一样是等分性的指标,因此每两级地震所释放的能量也相差巨大.根据里克特在1953年提出的公式计算,每一级地震释放的能量都是次一级地震的倍.这意味着,里氏震级每高出0.1级,就会多释放出0.4125倍的能量(如7.8级比7.7级会多释放出0.4125倍的能量).那么5月12日下午2时28分四川汶川地区发生的8.0级大地震与5月25日下午4时21分四川青川一带发生的6.4级余震相比,前次所释放的能量约是后次的()A.22倍B.34倍C.40倍D.251倍25.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁参考答案1.解:(+4+0+5﹣3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选:A.2.解:依题意得:机器人每5秒完成一个前进和后退,即前5个对应的数是1,2,3,2,1;6~10是2,3,4,3,2.根据此规律即可推导判断.(1)和(2),显然正确;(3)中,108=5×21+3,故x108=21+1+1+1=24,104=5×20+4,故x104=20+3﹣1=22,24>22,故错误;(4)中,2007=5×401+2,故x2007=401+1+1=403,2008=401×5+3,故x2008=401+3=404,正确.故选:D.3.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.4.解:因为a=(﹣)67,b=(﹣)68,c=(﹣)69,68是偶数,b>0,﹣>﹣1,∴c>a,所以b>c>a,故选:C.5.解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.6.解:由表中数据可知:A﹣C=90①,C﹣D=80②,D﹣E=60③,E﹣F=﹣50④,F﹣G=70⑤,G﹣B=﹣40⑥,①+②+③+…+⑥,得:(A﹣C)+(C﹣D)+(D﹣E)+(E﹣F)+(F﹣G)+(G﹣B)=A﹣B=90+80+60﹣50+70﹣40=210.∴观测点A相对观测点B的高度是210米.故选:A.7.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.8.解:根据题意分析可得:连续对折5次后,共25段即32段;故剪刀沿对折5次后的绳子的中间将绳子剪断,有两端的两个线段长度是,其余的长度是,∵+×31=1,∴共有31+2=33段.故选:C.9.解:由题意得,a2+2a+1=0,1﹣b=0,解得,a=﹣1,b=1,则ab=﹣1,故选:B.10.解:根据题意得:[(1000+120)﹣(2000﹣1120)]÷6=40,880÷40=22(杯),则阿辉买了22杯饮料,故选:A.11.解:29÷(71+29)=0.29,5.1×0.29≈1.5亿平方公里.故选A.12.解:将42000用科学记数法表示为:4.2×104.故选:A.13.解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.14.解:52 000 000=5.20×107.故选:D.15.解:5.28×=5.28×10﹣6km2=5.28m2.故选:B.16.解:1×73+3×72+2×7+6=510,故选:C.17.解:∵与|b+1|互为相反数,∴+|b+1|=0,∴a+=0且b+1=0,∴a=﹣,b=﹣1,∴=+1.故选:B.18.解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴<<,∴9.98<<9.99,∴998<<999,即其个位数字为8.故选:D.19.解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.20.解:根据题意得:=10,=0.1,0.12=0.01,=0.1,=10,102=100,100÷6=16…4,则第100次为0.1.故选:B.21.解:3=,3得被开方数是的被开方数的30倍,3在第六行的第5个,即(6,5)是(6,2)故选:C.22.解:∵a﹣b=(﹣3)13﹣(﹣3)14﹣(﹣0.6)12+(﹣0.6)14=﹣313﹣314﹣12+14<0,∴a<b,∵c﹣b=(﹣1.5)11﹣(﹣1.5)13﹣(﹣0.6)12+(﹣0.6)14=(﹣1.5)11+1.513﹣0.612+0.614>0,∴c>b,∴c>b>a.故选:D.23.解:∵1<2,3<4,又∵<a<,∴1<a<4,故选:B.24.解:依题意得()1.6=≈251.故选:D.25.解:∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选:A.。
专题二 数与式大小的比较一、问题的提出【2016高考新课标1文数】若0a b >>,01c <<,则(A )log a c <log b c (B )log c a <log c b (C )a c<bc(D )c a >c b利用指数函数、对数函数、及幂函数的性质比较数与式的大小是高考中的热点,本题对此问题作深入探讨,帮助同学们掌握数与式大小的基本方法. 二、问题的探源本题解法:由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B.本题也可以 用特殊值代入验证.【点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较. 一、思路点拨1.比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. 2.若题中所给的对数式的底数相同时,可以考虑利用对数函数的单调性来比较大小,在比较时,一定要注意底数所在X 围对单调性的影响,即a >1时xa y log =是增函数,0<a <1时xa y log =是减函数,当对数底数为变量时,要分情况对底数进行讨论来比较两个对数的大小.3.若题中所给的对数式的底数和真数都不相同时,可以找一个中间量作为桥梁,通过比较中间量与这两个对数式的大小来比较对数式的大小,.在具体比较时,可以首先将它们与零比较,分出正负;正数通常再与1比较分出大于1还是小于1,然后在各类中间两两相比较,另外若题中既有对数式又有指数式,也常用中间量比较大小.4.比较复杂的数与式大小的比较有时可通过作差或作上比较大小 二、技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN +=log log log a a a M M N N-= (3)()log log 0,1,0na a N n N a a N =>≠>(4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a =(令c b =) log log m n a a nN N m=三、问题的佐证【例1】已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c【解析】把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c .【例2】已知a =5log 2 3.4,b =5log 4 3.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b【解析】选C.c =⎝ ⎛⎭⎪⎫15log 30.3=5-log 3 0.3=5log 3103.法一:在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.由于y =5x为增函数,∴5log 23.4>5log 3103>5log 43.6,∴a >c >b .【例3】【2017某某高考】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项.【点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.【例4】【2016高考某某】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --<D. (1)()0b b a -->【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误. 四、问题的解决1. 【2016高考新课标Ⅲ文数】 已知4213332,3,25a b c ===,则( ) (A) b a c << (B)a b c <<(C) b c a << (D) c a b <<【答案】A【解析】因为423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以222333345<<,即b a c <<,故选A .【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 2.已知0.90.7 1.1log 0.8,log 0.9,c 1.1a b ===,则,,a b c 的大小关系是( ) A .a b c << B .a c b << C .b a c << D .c a b << 【答案】C【解析】0.900.70.7 1.10log 0.8log 0.71,log 0.90,c 1.1 1.11a b <=<==<=>=⇒b a c <<,故选C .3.【2014某某文3】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【答案】C 【解析】因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.【点睛】本题考查指数函数、对数函数的性质,比较函数值大小问题,往往结合函数的单调性,通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用. 4. 【2015高考某某】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( ) (A )a b c << (B ) a c b <<(C )b a c << (D )b c a << 【答案】C【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .5. 【2014某某文5】设 1.13.13log 7,2,0.8a b c ===则( )A .c a b <<B .b a c <<C .a b c <<D .b c a << 【答案】B .【点睛】指对数比较大小也是高考中常见的考题,常见的方法有:①比较同底数对数的大小利用函数单调性;②底数不同的对数比较,利用函数图像及相互位置关系比较大小;③既有指数又有对数,或对数底数与真数都不同时,常采用放缩法或找中间值法,多选0和1等. 6.【2014某某高考】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 【答案】C.【解析】因为2221122log log 21,log log 10,(0,1),a b c πππ-=>==<==∈所以b c a >>,选C.7.已知01a <<,log 2log 3a a x =1log 52a y =,log 21log 3a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>【解析】log 6,a x =log 5,a y =log 7,a z =由01a <<知xa y log =为减函数,y x z ∴>>,选C.8. 【2014某某高考】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >>B .a c b >> C .c a b >> D .c b a >>【答案】C【解析】1032122110221,log 0,log log 31,33a b c -<=<==<==>所以c a b >>,故选C .9.【2014某某高考】 已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)xy +>+ D.221111x y >++ 【答案】A10.【2015高考某某】设()ln ,0f x x a b =<<,若)p f ab =,()2a bq f +=, 1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C【解析】1()ln 2p f ab ab ab ===;()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab =+=因为2a b ab +>,由()ln f x x =是个递增函数,()(2a bf f ab +> 所以q p r >=,故答案选C【点睛】1.本题考查函数单调性,因为函数()ln f x x =是个递增函数,所以只需判断2a b+和ab 的大小关系即可;2.本题属于中档题,注意运算的准确性.11.已知)(x f 的定义在()+∞,0的函数,对任意两个不相等的正数21,x x ,都有0)()(212112<--x x x f x x f x ,记5log )5(log ,2.0)2.0(,2)2(22222.02.0f c f b f a ===,则( ) A.c b a << B.c a b << C.b a c << D.a b c << 【答案】.C【解析】因为函数)(x f 的定义在()+∞,0的函数,对任意两个不相等的正数21,x x , 都有0)()(212112<--x x x f x x f x ,所以函数()f x y x=是()+∞,0上的减函数. 又因为0.22122,00.21<<<<,2log 52>,所以20.220.22log 5<<,c a b ∴<<,故选C.12.【2017某某高考理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a << 【答案】C【点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 13. 【2015高考,文10】32-,123,2log 5三个数中最大数的是. 【答案】2log 5【解析】31218-=<,12331=>,22log 5log 423>>>,所以2log 5最大.14. 【2014某某,理9】若2132)(x x x f -=,则满足0)(<x f 的x 取值X 围是. 【答案】(0,1)【点睛】1.幂函数y =x α的图像与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图像过原点和(1,1),在第一象限的图像上升;α<0时,图像不过原点,在第一象限的图像下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键. 15.已知()1145279722,,,log 979xxf x a b c --⎛⎫⎛⎫=-===⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )【答案】()()()f c f b f a <<【解析】()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B .。
专题02 代数式和整式(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2018·河北中考模拟)有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|=()A.﹣2c B.2b﹣2c+2a C.﹣2a﹣2b﹣2c D.﹣4a+2c【解析】根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,则原式=b﹣a﹣a﹣b﹣2c+2a=﹣2c.故选A.2.(2018·江苏中考模拟)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1 B.﹣1 C.7 D.﹣7【解析】∵a+b=4,c-d=3,∴原式=b+c-d+a=(a+b)+(c-d)=3+4=7,故选:C.3.(2016·山东中考真题)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【解析】∵第1个图形中,小正方形的个数是:221-=3;-=8;第2个图形中,小正方形的个数是:231第3个图形中,小正方形的个数是:241-=15;…∴第n 个图形中,小正方形的个数是:2(1)1n +-=22n n +; 故选C .4.(2016·广东中考模拟)下列各组的两项是同类项的为( ) A .3m 2n 2与-m 2n 3 B .12xy 与2yx C .53与a 3 D .3x 2y 2与4x 2z 2【解析】A 、3m 2n 2与﹣m 2n 3字母n 的指数不同不是同类项,故A 错误;B 、12xy 与2yx 是同类项,故B 正确;C 、53与a 3所含字母不同,不是同类项,故C 错误;D 、3x 2y 2与4x 2z 2所含的字母不同,不是同类项,故D 错误, 故选B .5.(2013·四川中考真题)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样【解析】解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ; 乙超市售价为:x (1﹣15%)2=0.7225x ; 丙超市售价为:x (1﹣30%)=70%x=0.7x ; 故到丙超市合算. 故选:C .6.(2018·四川中考模拟)把四张形状大小完全相同的小正方形卡片(如图1)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子的底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分的周长和是( )A .4mcmB .4ncmC .2(m +n )cmD .4(m −n )cm【详解】设小长方形卡片的长为a ,宽为b ,∴L 上面的阴影=2(n ﹣a +m ﹣a ),L 下面的阴影=2(m ﹣2b +n ﹣2b ),∴L 总的阴影=L上面的阴影+L 下面的阴影=2(n ﹣a +m ﹣a )+2(m ﹣2b +n ﹣2b )=4m +4n ﹣4(a +2b ).又∵a +2b =m ,∴4m +4n ﹣4(a +2b )=4n . 故选B .7.(2018·湖北中考真题)下列代数式中,整式为( )A .x+1B .11x + CD .1x x+ 【详解】A 、x+1是整式,故此选项正确;B 、1x 1+是分式,故此选项错误;C D 、x 1x+是分式,故此选项错误, 故选A .8.(2018·贵州中考模拟)下面关于单项式-13a 3bc 2的系数与次数叙述正确的是( ) A .系数是13,次数是6 B .系数是-13,次数是5C .系数是13,次数是5D .系数是-13,次数是6【解析】单项式的系数为:13-;次数为:3+1+2=6.故选D .9.(2019·江苏中考模拟)若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( ) A .2 B .0C .4D .1【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项, ∴m =2, 2+n=4, 解得: m =2, n =2, ∴22 4.n m == 故选:C.10.(2011·安徽中考模拟)已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .﹣13x ﹣1D .13x+1【解析】设这个多项式为M , 则M=3x 2+4x-1-(3x 2+9x ) =3x 2+4x-1-3x 2-9x =-5x-1. 故选A .11.(2018·浙江中考模拟)下列各式中,是8a 2b 的同类项的是( ) A .4x 2y B .―9ab 2C .―a 2bD .5ab【详解】A 、8a 2b 和4x 2y ,字母不同不是同类项,故本选项错误;B 、8a 2b 和-9ab 2所含字母指数不同,不是同类项,故本选项错误;C 、8a 2b 和-a 2b 所含字母相同,指数相同,是同类项,故本选项正确;D 、8a 2b 和5ab 所含字母指数不同,不是同类项,故本选项错误. 故选:C.12.(2015·江苏中考真题)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y +C .2x y --D .2x y -+【解析】原式去括号合并即可得到结果. 解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y , 故选A .二、 填空题(共5小题,每小题4分,共20分) 13.(2017·四川中考真题)若312m x y +-与432n x y +是同类项,则2017()m n +=______. 【解析】 解:∵312m x y +-与432n x y +是同类项, ∴m +3=4,n +3=1,∴m =1,n =﹣2, ∴2017()m n +=(1﹣2)2017=﹣1,故答案为:﹣1.14.(2017·辽宁中考模拟)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).【解析】故剪n次时,共有4+3(n-1)=3n+1.15.(2018·广东中考模拟)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【解析】由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.16.(2018·内蒙古中考模拟)若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是_____.【详解】∵两个单项式2x m y n与-3xy3n的和也是单项式,∴2x m y n与-3xy3n是同类项,∴m=1,n=3n,∴m=1,n=0,∴(m+n)m=(1+0)1=1,故答案为:117.(2017·广西中考模拟)单项式225x y的系数是_______,次数是_______.【解析】根据单项式定义得:单项式﹣225x y的系数是﹣25,次数是3.故答案为:25,3. 三、 解答题(共4小题,每小题8分,共32分)18.(2018·河北中考真题)嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++W ,发现系数“W ”印刷不清楚.1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几? 【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2 =﹣2x 2+6; (2)设“”是a ,则原式=(ax 2+6x+8)﹣(6x+5x 2+2) =ax 2+6x+8﹣6x ﹣5x 2﹣2 =(a ﹣5)x 2+6,∵标准答案的结果是常数, ∴a ﹣5=0, 解得:a=5.19.(2018·安徽中考模拟)先化简,再求值:2x 2–[3(–13x 2+23xy )–2y 2]–2(x 2–xy+2y 2),其中x =12,y =–1. 【分析】先去小括号,再去中括号,然后,合并同类项,这样即可得出最简整式,从而代入x 及y 的值即可得出答案. 【详解】原式=()2222222222x x xy y x xy y ⎡⎤--+---+⎣⎦=2x²+x²-2xy+2y²-2x²+2xy-4y² = x 2-2y 2当12x =,y=-1时, x 2-2y 2=221()2(1)2-⨯-=74-20.(2019·浙江中考模拟)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m 或n 的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得. 【详解】(1)矩形的长为:m ﹣n , 矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2, 当m=7,n=4时,S=72-42=33.21.(2017·北京中考模拟)已知x 2﹣x ﹣3=0,求代数式(x ﹣1)2+(x+2)(x ﹣2)的值. 【解析】原式22214,x x x =-++- 2223x x =--, 230x x --=Q , 23x x ∴-=,∴原式()223633x x =--=-=.。