最新人教版数学五下总复习知识点(最完整)
- 格式:doc
- 大小:128.50 KB
- 文档页数:10
五年级数学下册重要知识点归纳总结(最
新人教版2023年版)
数的认识:
- 比较大小:使用数字线段比较大小,使用阶梯型图简单比较
两个数大小,认识正数、负数及0。
- 数的拆分与组合:将较大的数拆成较小的数,用不同方法表
示相同的数,相同的数可分成不同的若干份。
- 十进位数:认识数码符号,认识百分符号。
小数:
- 小数的认识:认识小数的基本概念,将分数转化为小数,认
识相同数字的不同小数形式,将小数转化为分数。
- 小数的比较:认识小数的大小关系,能够比较两个小数的大小。
- 小数的加减法:掌握小数的加减法,解决生活中的实际问题。
分数:
- 分数的认识:认识分数的基本概念,认识分数的分子、分母,将带分数转化为假分数。
- 分数的比较:认识分数的大小关系,能够比较两个分数的大小,并进行排列。
- 分数的加减法:掌握分数的加减法,解决生活中的实际问题。
面积和周长:
- 面积:认识平行四边形、长方形和正方形,掌握求长方形、
正方形和平行四边形面积的方法。
- 周长:认识周长的概念,掌握求长方形、正方形和平行四边
形周长的方法。
图形的认识:
- 直线和曲线:认识直线和曲线,认识几种基本的直线和曲线
符号。
- 平面图形:认识几何图形的分类和性质,认识正方形、长方形、平行四边形、三角形、圆形、梯形等图形的性质和特点。
- 立体图形:认识物体的三个基本要素:长、宽、高,了解常
见的几种立体图形。
以上是五年级数学下册的重要知识点总结,希望能对您有所帮助。
最新人教版小学数学五年级下册知识点归纳总结亲爱的小朋友们,今天我们来聊聊最新人教版小学数学五年级下册的知识点。
这个学期我们学了很多有趣的东西,让我们一起来回顾一下吧!我们学习了分数。
分数是表示一个整体的一部分,有分子和分母组成。
比如,三分之一就是1/3,四分之一就是1/4。
我们还学会了如何比较分数的大小,例如:2/3 >1/2。
这些知识在生活中很有用哦,比如我们可以帮妈妈把蛋糕分成8份,每份就是1/8。
我们学习了小数。
小数是一种特殊的分数,它的分母不是10、100等整数,而是无限不循环的小数。
比如,0.5就是1/2的小数形式。
我们还学会了如何将小数转换为分数,例如:0.75 = 3/4。
这些知识可以帮助我们更好地理解和计算一些问题。
我们学习了几何图形。
几何图形有很多种,比如长方形、正方形、圆形、三角形等等。
我们学会了如何计算它们的面积和周长。
例如,一个长方形的面积是长乘以宽,周长是(长+宽)×2。
这些知识可以帮助我们更好地理解和绘制各种图形。
我们还学习了一些关于时间的知识。
比如,一天有24小时,一小时有60分钟,一分钟有60秒。
我们学会了如何看时钟、计时和做时间表。
这些知识可以帮助我们更好地管理自己的时间哦!我们还学习了一些关于统计的知识。
统计是指对数据进行收集、整理和分析的过程。
我们学会了如何制作简单的统计图表,并通过图表来分析数据。
例如,我们可以画一个柱状图来比较不同班级的成绩高低。
这些知识可以帮助我们更好地理解和应用数据哦!以上就是最新人教版小学数学五年级下册的知识点总结啦!希望你们能够认真学习和掌握这些知识,成为聪明的小数学家!。
五年级下册重点知识归纳一、数学(人教版五年级下册)1. 因数与倍数。
- 因数和倍数的概念:如果a× b = c(a、b、c都是非0自然数),那么a和b 是c的因数,c是a和b的倍数。
例如3×4 = 12,3和4是12的因数,12是3和4的倍数。
- 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
- 2、3、5的倍数特征:- 2的倍数特征:个位上是0、2、4、6、8的数是2的倍数。
- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
- 5的倍数特征:个位上是0或5的数是5的倍数。
- 既是2又是5的倍数特征:个位上是0的数。
- 质数与合数:- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如2、3、5、7等。
- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
例如4、6、8、9等。
- 1既不是质数也不是合数。
2. 长方体和正方体。
- 长方体:- 长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
- 长方体的棱长总和=(长 + 宽+高)×4。
- 长方体的表面积=(长×宽+长×高+宽×高)×2。
- 长方体的体积 = 长×宽×高,用字母表示V = abh。
- 正方体:- 正方体是特殊的长方体,正方体的6个面都是正方形,6个面完全相同;12条棱长度都相等;8个顶点。
- 正方体的棱长总和=棱长×12。
- 正方体的表面积 = 棱长×棱长×6,用字母表示S = 6a^2。
- 正方体的体积=棱长×棱长×棱长,用字母表示V=a^3。
- 体积单位:- 常用的体积单位有立方厘米、立方分米、立方米。
最全面人教版数学五年级下册知识点归纳总结数学在小学阶段是一门非常重要的学科,它培养了学生的逻辑思维和数学运算能力。
今天,我们就来总结一下人教版数学五年级下册的知识点,帮助同学们更好地复习和掌握这些知识。
一、整数的加减运算整数的加减运算是五年级下册的一个重要内容。
在这个章节中,我们学习了同号相加、异号相减的规则,并掌握了整数在数轴上的表示方法。
同学们要注意符号的运用,掌握好正数和负数的加减运算。
二、小数的认识和运算小数的认识和运算也是五年级下册的一项重要内容。
我们学习了小数的读法、写法和大小比较,并且掌握了小数的加减乘除运算规则。
同学们要注意小数点的位置和运算规则,灵活运用小数进行实际问题的解决。
三、图形的认识和计算图形的认识和计算是数学中的基础知识,也是五年级下册的重点内容。
在这个章节中,我们学习了各种常见图形的性质和计算方法,例如长方形、正方形、三角形等。
同学们要学会用适当的公式计算图形的面积和周长,同时还要了解图形在生活中的应用。
四、时间、温度和长度的度量时间、温度和长度的度量是数学中的实际应用内容。
在这个章节中,我们学习了钟表的读法、温度的读法和长度的度量方法。
同学们要掌握好24小时制和12小时制的换算,能够熟练地读取温度计上的温度,并且能够用标尺进行长度的测量。
五、数据的统计和分析数据的统计和分析是数学中的一项非常重要的内容。
在这个章节中,我们学习了收集数据、整理数据和表示数据的方法,并且了解了频数、频率和平均数的计算。
同学们要懂得如何统计数据,并能够正确地分析数据,作出合理的结论。
六、多边形的认识和计算在五年级下册,我们还学习了多边形的认识和计算。
多边形是指有三条及以上边的图形,我们要学会分辨和计算各种多边形的性质,例如正多边形、不规则多边形等。
同学们要学会用适当的公式计算多边形的周长和面积,提高自己的计算能力。
七、任意形式的变量代数式在五年级下册最后一个章节,我们学习了任意形式的变量代数式。
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
五年级下册人教版数学所有知识点五年级下册人教版数学知识点如下:一、分数:1.真分数、假分数和带分数的概念2.分数的大小比较3.分数的加法、减法4.分数的乘法5.分数的除法6.分数的约分和通分二、小数:1.小数、整数、分数的关系2.小数点的位置及读法3.小数的大小比较4.小数的加法、减法5.小数的乘法6.小数的除法三、百分数:1.百分数、百分数的基本概念2.百分数和分数、小数之间的转换3.分数、小数的百分数表示4.百分数的加减法5.百分数的乘法和除法6.找出多少百分比四、数的认识:1.万以内的数、千万以内的数2.十万以内数的读法、写法,按位读写3.十万以内数的大小比较4.数轴的认识5.定位整数、分数、小数五、运算:1.整数的加法、减法2.整数的乘法3.整数的除法六、图形:1.平行四边形的概念2.正方形、长方形、三角形、梯形和菱形的特点3.正方形、长方形、三角形、梯形和菱形的周长与面积的计算七、容积:1.容量单位之间的换算2.容器的容积的测量3.大小数的容积的加减法4.容器的容积的估算八、时间:1.时间单位之间的换算2.时间的读法、写法3.时间的加法、减法4.时间的问题求解九、长、质量:1.长度单位之间的换算2.长度的测量,长的大小比较3.大小数的长的加减法4.质量单位之间的换算5.质量的测量,质量的大小比较6.大小数的质量的加减法以上就是五年级下册人教版数学的所有知识点,希望对您有所帮助。
最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
最新人教版五年级下册数学知识点总结
五年级下册数学知识点总结如下:
1.分数的概念和表示方法:分子、分母、真分数、假分数、带分数。
2.分数相等的判断:通过化简或扩展分数的方法,判断两个分数是否相等。
3.分数的比较:同分母的分数可以比较大小,分母相同,分子越大则分数越大。
4.分数的四则运算:加法、减法、乘法、除法的基本概念和运算方法。
5.同分母的分数相加、相减:将分数的分母保持不变,将分数的分子相加或相减。
6.不同分母的分数相加、相减:通过通分,将分数的分母变为相同,然后进行相加或相减。
7.分数的乘法:将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。
8.分数的除法:将一个分数的分子和另一个分数的分母相乘得到新的分子,分母和另一个分数的分子相乘得到新的分母。
9.用分数表示小数:将分子作为小数点后面的数字,分母表示位数的大小,如⅓=0.333...
10.小数转分数:将小数的位数作为分母,小数点后的数字作为分子,进行分数化简。
11.分数的倍数关系:如果一个数是另一个数的倍数,那么它的分
数形式也是相应分数的倍数。
12.合理使用分数单位:在实际问题中,用分数来表示和比较较大
或较小的数。
人教版数学五年级下册第一单元《观察物体三》1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
3、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
4、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
(先由上面确定立体图形的形状,再由左(右)和前(后)确定立体图形有几层,每层有几行几列。
)5、从一个方向看到的图形摆立体图形,有多种摆法。
6、从多个角度观察立体图形 : 先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
第二单元因数和倍数一、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的余数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
倍数和倍的区别:倍可以运用于整数、小数、分数,而倍数只能运用于整数。
例: 15是3的5倍,可以说15是3的倍数。
1.5是0.3的5倍,不能说1.5是0.3的倍数。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
二、自然数按能不能被2整除分为:奇数偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120。
三、自然数按因数的个数来分:质数、合数、1.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10,12,14,15,16,18,20,22,26,49……都是合数。
合数至少有三个因数,1、它本身、别的因数1:只有1个因数。
“1”既不是质数,也不是合数。
20以的质数:有8个(2、3、5、7、11、13、17、19)(1)所有的奇数都是质数。
不对,因为9是奇数,但不是质数,而是合数。
(2)所有的偶数都是合数。
不对,因为2是偶数,但不是合数,是质数。
(3)在1,2,3,4,5,…中,除了质数以外都是合数。
不对,因为1既不是质数也不是合数。
(4)两个质数的和是偶数。
不对,因为2是质数也是偶数,而其他的质数都是奇数,偶数+奇数=奇数。
(5)最小的奇数是1;最小的偶数是0;最小的质数是2;最小的合数是4;8是一位数中最大的偶数;9是一位数中最大的奇数;1不是质数,也不是合数。
连续的两个质数是2、3。
四、100以的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97五,质数×质数=合数奇数+奇数=偶数(如:5+7=12 3+5=8 ……)奇数+偶数=奇数(如:1+4=5 7+2=9 ……)偶数+偶数=偶数(如:2+4=6 8+6=14 ……)奇数×奇数=奇数(如:5×7=35 7×9=63 ……)奇数×偶数=偶数(如:5×8=40 7×8=56 ……)偶数×偶数=偶数(如: 8×12=96 14×24=336 ……)六、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个因数就叫它们的最大公因数。
用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3 两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
七、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
例:3和6最小公倍数是6.如果两数互质时,那么它们的积就是它们的最小公倍数。
;例:5和7最小公倍数是35. 11、求最大公因数和最小公倍数方法(最常用-短除法) (分解质因数法)12=2×2×316=2×2×2×2最大公因数是:2×2=4(相同乘)最小公倍数是:2×2×3×2×2= 48(相同乘×不同乘)注意1:“求一个数是(占)另一个数的几分之几”的问题的解题办法:用前面那个数除以后面一个数。
注意2:最大公因数应用题的标志词:最多;最小公倍数应用题的标志词:至少第三单元长方体和正方体1、长方体和正方体都是立体图形。
正方体也叫立方体。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)3、长方体的特征:①面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
②棱:有12条棱。
相对的棱长度相等。
③顶点:有8个顶点。
4、正方体的特征:①面:有6个面都是正方形,6个面完全相同。
②棱:有12条棱。
12条棱的长度相等。
③顶点:有8个顶点。
5、正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
至少要8个小正方体才能拼成一个稍大的正方体。
长方体的棱长总和=(长+宽+高)×4 L=(a +b +h )×4长=棱长总和÷4-宽 -高 a=L ÷4-b -h宽=棱长总和÷4-长 -高 b=L ÷4-a -h高=棱长总和÷4-长 -宽 h=L ÷4-a -b正方体的棱长总和=棱长×12 L=a ×正方体的棱长=棱长总和÷12 a=L ÷126、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab +ah +bh ) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab +ah +bh )-abS=2(ah +bh )+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah +bh ) 正方体的表面积=棱长×棱长×6 S=a ×a ×67、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V ÷b ÷h宽=体积÷长÷高 b=V ÷a ÷h高=体积÷长÷宽 h= V ÷a ÷b正方体的体积=棱长×棱长×棱长 V=a ×a ×a=a 3底面积: 长方体或正方体底面的面积叫做底面积。
底面积=长×宽长方体和正方体的体积统一公式:长、正方体的体积都=底面积×高 V=sh8、箱子、油桶、仓库等容器所能容纳物体的体积,通常叫做他们的容积。
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
(所以物体的体积大于它的容积)。
生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍(正方体的棱长扩大a 倍),则表面积扩大a2倍,体积扩大a3倍。
(如长、宽、高各扩大3倍,表面积就会扩大到原来的9倍,体积就会扩大到原来的27倍)。
注意3:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
注意4:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升9、a3读作“a的立方”表示3个a相乘,(即a·a·a)13、单位换算(换算方法:大单位×进率=小单位小单位÷进率=大单位大到小除以进率,小到大乘进率)长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)面积单位:1平方千米=100公顷 1平方米=100平方分米 1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)体积、容积单位:1立方米=1000立方分米 1立方分米=1升1立方分米=1000立方厘米 1立方厘米=1毫升 1升=1000毫升质量单位:1吨=1000千克 1千克=1000克人民币:1元=10角 1角=10分 1元=100分时间单位1时=60分 1分=60秒 1时=3600秒10、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
11、排水法:(计算不规则物体的体积)12、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
表面积增加了切面面积×2第四单元分数的意义和性质1、单位“1”表示:一个物体、一个计量单位或是一些物体都可以看成一个整体。
这个整体可以用自然数1来表示,我们通常把它叫做单位“1”2、把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
3、把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
被除数4、分数与除法的关系:被除数÷除数=除数分数后不带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。