符号计算
- 格式:pptx
- 大小:167.21 KB
- 文档页数:33
符号运算参考答案讲解实验3 符号运算⼀、实验⽬的1.掌握符号对象的创建及符号表达式化简的基本⽅法;符号(symbol)运算的基本功能.2.掌握符号微积分、符号⽅程的求解的基本⽅法。
⼆、实验内容与要求1. 字符型变量、符号变量、符号表达式、符号⽅程的建⽴⽤单引号设定字符串变量>>a ='u+4'%定义a为字符型变量a =u+4⽤命令sym(‘’)创建单个符号变量、符号表达式、符号⽅程. >>x= sym('m+n+i') %定义x为符号型变量x=m+n+i>>y = sym('d*x^2 + x – 4')%定义y为符号表达式y=d*x^2 + x – 4>>e = sym(' a*x^2+b*x+c=0') %定义e为符号⽅程e=a*x^2+b*x+c=0⽤命令syms创建多个符号变量、符号表达式.>>syms a b x y %定义a,b,x,y为符号变量,字母间必须⽤空格>>s = a*x^4+b*cos(y)-x*y %定义s为符号表达式s=a*x^4+b*cos(y)-x*y基于MA TLAB的数学实验16注意:sym(‘’)中的单引号不要漏,syms后的符号变量之间不能⽤逗号,⽤syms不能建⽴符号⽅程.2. 复合函数计算格式:compose(f,g,x,y)%返回复合函数f [ g (y)],f = f (x),g = g (y).>>syms x y>>f = 1/(1 + x^2*y); g = sin(y);>>C = compose(f,g,x,y) % 结果为1/(1+sin(y)^2*y)2 合并同类项格式:collect(S) %是对S中的每⼀函数,按缺省变量x的次数合并系数.collect(S,v) %是对指定的变量v计算,操作同上.【例1.18】>> syms x y %定义x,y为符号变量>> R1=collect((exp(x)+x)*(x+2)); %结果为x^2+(exp(x)+2)*x+2*exp(x)>> R2=collect((x+y)*(x^2+y^2+1),y);%结果为y^3+x*y^2+(x^2+1)*y+x*(x^2+1) 4.符号表达式的展开格式:R=expand(S) %展开符号表达式S中每个因式的乘积。
计算机符号计算
《计算机符号计算》
一、什么是符号计算
符号计算也称计算机符号化模型是一种以符号,而不是常规数值,表示计算机中问题的方法,它将常规的计算问题用符号抽象出来,使得计算机能够自动识别、处理和推理这些问题。
符号计算有两类:一类是符号逻辑计算,另一类是符号模拟计算。
符号逻辑计算是用逻辑表示(包括命题逻辑、概念逻辑、形式逻辑等)建立的符号模型来描述问题的,进而运用推理机制来求解问题;而符号模拟计算是模拟问题本身,通过符号表示和计算机编程等来求解问题。
二、符号计算的优势
1、易操作:符号计算的操作极其简单,因此在计算机中实现符
号计算非常容易,而传统的数值计算则比较复杂。
2、健壮性:符号计算在健壮性方面好于数值计算,能更好地抵
御不确定性和变化的环境。
3、易理解:符号计算能够直观地显示计算过程,被计算的对象
用字符符号表示,容易深入理解,更容易验证计算结果的正确性。
4、准确性:符号计算是通过计算机的模拟,使得能够考虑到计
算中的所有复杂性,从而达到更高的准确性。
三、符号计算的应用
符号计算的应用非常广泛,主要有以下几个方面:
1、模拟计算:符号计算是一种精确模拟,它能够将复杂的现实问题模拟出来,以满足精确模拟的要求。
2、控制系统设计:符号计算能够提供许多便利的方法来处理不确定性和复杂性,因此在控制系统设计中也有广泛应用。
3、智能推理:符号计算本身就是一种智能推理,它能够解决复杂的知识推理问题。
4、大数据处理:符号计算可以帮助处理大数据,它能够快速地处理巨大的数据集,从而得出数据模型和关联结构。
符号计算与数值计算的结合方法研究符号计算与数值计算是计算机科学中两个重要的研究领域。
符号计算主要处理符号表达式,能够精确地求解代数方程、微积分问题等数学问题,是高级数学、科学与工程领域不可缺少的工具。
数值计算主要处理离散数据的计算问题,其应用范围非常广泛,包括科学计算、工业计算等。
符号计算和数值计算都有其独特的优缺点,它们之间的结合方法可以充分发挥它们的优势,解决更加复杂的数学问题。
一、符号计算和数值计算的优缺点符号计算和数值计算有各自的优缺点。
符号计算具有高精度、高可靠性和通用性等优点,它能够对代数方程、微积分问题等数学问题进行完全的符号化处理,获得闭合的解析式。
符号计算的缺点是其处理速度较慢,且对于复杂的数学问题难以进行符号化处理。
数值计算具有处理速度快、适用范围广等优点,其模拟了许多现实世界中的问题,能够提供数字解,而不是解析解。
数值计算的缺点是处理的数据是离散的,其精度始终受到数据离散程度的限制。
二、符号计算和数值计算的结合方法符号计算和数值计算之所以能够结合起来,是因为它们既有各自的优势和特点,又有互补的作用。
在实际应用中,符号计算和数值计算常常配合使用,以在不同场景下获得更好的计算效果。
1. 符号计算和数值计算的计算优化符号计算和数值计算的结合方法可以优化计算过程。
符号计算能够将数学问题转换为更加简洁的表达式,使得计算过程更加高效。
数值计算则能够将符号计算得到的表达式对应转化为算法,使得计算结果更加准确。
符号计算通过化简、代数替换等技术,将原本复杂的数学公式转换为更为简单的形式,从而降低计算难度。
数值计算则通过数值模拟、优化算法等技术,加速计算,提高并行化效率,增强数值计算的可靠性。
2. 符号计算和数值计算的数据在表达上的转换符号计算和数值计算的结合方法可以进行数据在表达上的转换。
符号计算的处理结果是高度抽象、形式上的,包括如多项式代数、超几何显式公式等数学结构,在特定场景下能够提供通用性的形式化解。