九年级数学切线的性质
- 格式:pdf
- 大小:949.05 KB
- 文档页数:16
九年级数学切线知识点数学是一门充满挑战和智慧的学科,而数学的学习过程中,我们常常会遇到各种各样的概念和知识点。
在九年级数学中,切线是一个很重要的概念,它与曲线的性质和函数的导数密切相关。
本文将从几何和数学的角度,深入探讨九年级数学中的切线知识点。
一、什么是切线切线是几何学中的一个重要概念,它是与曲线相切,并且只与曲线在切点相交的一条直线。
在数学中,我们通常把切线定义为对应曲线在该点处的斜率的直线。
换句话说,切线是曲线上某一点的附近逼近曲线的线段。
二、切线的性质切线有一些重要的性质,首先是切线与曲线的切点。
在切点处,切线与曲线相切。
其次,切线的斜率与曲线在切点处的斜率相等,这被称为切线的斜率性质。
另外,切线上的任意一点到曲线的距离都是0,这表明切线是曲线上所有点中离该点最近的直线。
三、如何确定切线在数学中,我们通常通过求导数来确定曲线上的切线。
导数是函数在某一点处的变化率,也是切线的斜率。
如果我们要确定曲线上某一点的切线,我们需要求该函数在该点的导数。
具体的求导过程可以通过极限的思想来解释。
通过求导数,我们可以得到切线的斜率,并且知道切点的坐标,从而确定切线的方程。
四、常见曲线的切线切线知识点在九年级数学中的应用广泛,特别是在几何和函数领域。
我们先来看一些常见曲线的切线知识点。
1. 直线的切线:直线是最简单的曲线,它在任意一点的切线都是其本身。
因为直线在任意一点的斜率都是常数,所以切线的斜率也是常数。
2. 圆的切线:对于圆,切线是与圆相切且只与圆在切点处相交的直线。
在圆的切线性质中,切线的斜率等于与切线垂直的半径的斜率的相反数。
3. 抛物线的切线:抛物线是一个常见的曲线模型,它的切线与曲线在切点处相切。
抛物线切线的斜率是对应点处的函数导数。
4. 指数函数和对数函数的切线:指数函数和对数函数是一类具有特殊性质的函数,它们的切线与曲线在切点处相切。
同时,指数函数和对数函数的导数具有特殊的性质,可以通过计算导数来得到切线的斜率。
初中数学切线性质和切线长知识点归纳切线性质和切线长切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理圆的切线垂直于经过切点的半径推论1 经过圆心且垂直于切线的直线必经过切点推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角同学们,看了这些学问点的介绍,很熟识了吧,要准时复习哦。
这样才能记得更好的。
中考物理学问归纳:压强和浮力1.压力:垂直作用在物体外表上的力叫压力。
2.压强:物体单位面积上受到的压力叫压强。
3.压强公式:P=F/S ,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F单位是:牛;受力面积S单位是:米24.增大压强方法 :(1)S不变,F↑;(2)F不变,S↓ (3) 同时把F↑,S↓。
而减小压强方法则相反。
5.液体压强产生的缘由:是由于液体受到重力。
6.液体压强特点:(1)液体对容器底和壁都有压强,(2)液体内部向各个方向都有压强;(3)液体的压强随深度增加而增大,在同一深度,液体向各个方向的压强相等;(4)不同液体的压强还跟密度有关系。
7.液体压强计算公式:,〔ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。
〕8.依据液体压强公式:可得,液体的压强与液体的密度和深度有关,而与液体的体积和质量无关。
9.证明大气压强存在的试验是马德堡半球试验。
10.大气压强产生的缘由:空气受到重力作用而产生的,大气压强随高度的增大而减小。
11.测定大气压强值的试验是:托里拆利试验。
12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计〔金属盒气压计〕。
13.标准大气压:把等于760毫米水银柱的大气压。
1标准大气压=760毫米汞柱=1.013×105帕=10.34米水柱。
14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时上升。
初中数学什么是切线长定理
初中数学中,切线长定理是与圆相关的一个重要概念。
下面我将详细介绍切线长定理的定义、性质和相关概念。
1. 切线长定理的定义:
-切线长定理:在一个圆上,一个角的顶点在切点上,另外两个顶点在圆上,这个角的两条边分别与切线相交,那么这两条切线的长度相等。
2. 切线长定理的性质:
-定理性质1:切线长度相等。
如果一个圆上的两条切线与同一个角相交,且角的顶点在切点上,那么这两条切线的长度相等。
3. 切线长定理的相关概念:
-切点:切线与圆相交的点称为切点。
-切线长度:切线的长度即为从切点到圆心的距离。
切线长定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与切线和圆相关的问题。
在应用切线长定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。
例如,如果我们需要判断两条切线的长度是否相等,我们可以先找到这两条切线与同一个角相交,并且角的顶点在切点上。
然后根据切线长定理的性质,我们可以得出这两条切线的长度相等。
希望以上内容能够满足你对切线长定理的了解。
人教版九年级数学上册24.2.3《切线的判定和性质》教学设计一. 教材分析人教版九年级数学上册24.2.3《切线的判定和性质》这一节主要介绍了直线与圆的位置关系,特别是圆的切线。
学生将学习如何判定一条直线是否为圆的切线,以及切线与圆的性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握切线的相关知识。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、圆等基本几何图形有一定的了解。
但是,对于切线的判定和性质,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,逐步引导他们理解和掌握切线的判定和性质。
三. 教学目标1.知识与技能目标:使学生理解切线的定义,学会判定一条直线是否为圆的切线,掌握切线的性质。
2.过程与方法目标:通过观察、分析、推理等数学活动,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:切线的定义,判定一条直线是否为圆的切线,切线的性质。
2.难点:理解并掌握切线的判定定理,以及如何运用到实际问题中。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察、分析和推理,让学生在实际情境中理解切线的定义和性质。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲,培养学生解决问题的能力。
3.合作学习法:学生进行小组讨论,鼓励学生互相交流、分享,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作精美的课件,展示切线的定义、判定和性质。
2.练习题:准备一些有关切线的练习题,以便在课堂上进行操练和巩固。
3.教学道具:准备一些圆形模型和直线模型,以便在课堂上进行直观展示。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆形物体,如篮球、乒乓球等,引导学生观察这些圆形物体上的切线。
然后提出问题:“你们认为,什么是切线?切线有哪些特点?”2.呈现(10分钟)介绍切线的定义,通过动画演示切线的形成过程,让学生直观地理解切线的定义。
切线长定理—知识讲解(提高)审稿:【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,设AD=x,⑴如图⑴当x取何值时,⊙O与AM相切;⑵如图⑵当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90°.【答案】(1)设AM与⊙O相切于点B,并连接OB,则OB⊥AB;在△AOB中,∠A=30°,则AO=2OB=4,所以AD=AO-OD,即AD=2.x=AD=2.(2)过O点作OG⊥AM于G∵OB=OC=2,∠BOC=90°,∴BC=,,∵∠A=30°∴OA=图(2)∴x=AD= 2类型二、三角形的内切圆3.如图,点I 为△ABC 的内心,点O 为△ABC 的外心,∠O =140°,则∠I 为( ) (A )140° (B )125° (C )130° (D )110°【答案】B .【解析】因点O 为△ABC 的外心,则∠BOC 、∠A 分别是BC 所对的圆心角、圆周角,所以∠O =2∠A ,故∠A =21×140°=70°.又因为I 为△ABC 的内心, 所以∠I =90°+21∠A =90°+21×70°=125°.【总结升华】本题考查圆心角与圆周角的关系,内心、外心的概念.注意三角形的内心与两顶点组成的角与另一角的关系式.类型三、与相切有关的计算与证明【高清ID 号: 356967 关联的位置名称(播放点名称):经典例题4】4. 如图,已知直径与等边△ABC 的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O与圆O 相交于点F 、G. (1) 求证:DE ∥AC.(2) 若△ABC 的边长为a ,求△ECG 的面积.【答案与解析】(1)∵△ABC 是等边三角形,∴∠B=∠A=60°∵AB 、BC 是圆O 的切线,D 、E 是切点,∴BD=BE.∴∠BDE=60°=∠A, ∴DE//AC.(2)分别连接OD 、OE ,作EH ⊥AC 于点H .∵AB 、BC 是圆O 的切线,D 、E 是切点,O 是圆心, ∴∠ADO=∠OEC=90°,OD=OE ,AD=EC.∴△ADO ≌△CEO,有AO=OC=12a . ∵圆O 直径等于△ABC 的高,∴半径 ,∴CG=OC+OG=2a . ∵EH ⊥OC ,∠C =60°,可推知EH =8a . ∴【总结升华】本题是一道综合性很强的习题,考查到切线的性质,全等三角形的判断,等边三角形的性质等,是一道很不错的题.。
初中数学什么是切线在几何学中,切线是指与给定曲线(如圆、椭圆、抛物线等)仅有一个公共点且与该曲线相切的直线。
切线在数学中有着重要的应用和意义。
在本文中,我将详细解释切线的概念、性质和应用。
切线的定义如下:对于给定曲线上的一点P,经过P点且与曲线相切的直线称为曲线在P点的切线。
切线与曲线仅有一个公共点,即切点。
切线的位置和方向是由曲线在该点的切线斜率决定的。
切线的性质包括以下几个方面:1. 切线与曲线在切点处的切线斜率相等。
切线斜率可以用导数来表示,即切线斜率等于曲线在该点的导数值。
2. 切线与曲线在切点处的切线垂直。
这是因为切线斜率与曲线的斜率相等,而曲线的斜率是垂直于切线的。
3. 切线在切点处与曲线有公共的切点。
这是切线的定义所决定的,切线与曲线仅有一个公共点,即切点。
通过切线的性质,我们可以进行切线的求解和应用。
以下是一些常见的切线应用:1. 求解曲线的切线方程。
根据切线的性质,我们可以通过求解切线的斜率和切点来确定切线的方程。
通常,切线方程可以表示为y = kx + b的形式,其中k为切线的斜率,b为切线与y轴的截距。
2. 计算曲线上某点切线的斜率。
通过求解曲线在该点的导数,我们可以得到切线的斜率,从而确定切线的性质和方程。
3. 解决与切线相关的几何问题。
切线在几何学中有着广泛的应用,如切线与圆的性质、切线与曲线的相交问题等。
通过应用切线的性质和定理,我们可以解决与切线相关的几何问题。
总结起来,切线是与给定曲线仅有一个公共点且与曲线相切的直线。
切线的性质包括切线斜率相等、切线垂直于曲线、切线与曲线有一个公共切点等。
切线在数学中有着广泛的应用和意义,可以用于求解切线方程、计算切线斜率以及解决与切线相关的几何问题。