涡流热效应
- 格式:ppt
- 大小:1.02 MB
- 文档页数:31
涡电流及其典型效应在许多电磁设备中常有大块的金属存在,当这些金属块在某方向上处在变化的磁场中或相对于磁场运动时,则在绕此方向为轴的平面内会有涡旋电场;因而在其内部以此为轴形成涡旋电流,简称为涡流,有时亦称付科电流.由于大块金属的电阻较小,因而涡流往往可达到非常大的强度.对于涡流,有三种典型的效应,下面分别介绍。
5.1热效应强大的涡流在金属内流动时,会释放出大量的焦耳热.工业上利用这种热效应,将通有大功率高频交变电流的特制线圈绕在冶金坩埚的外缘,从而制成高频感应电炉来冶炼金属.但涡流所产生的热效应在电机、变压器等工程技术中却是非常有害的,因而采用与磁通横向的彼此绝缘的迭压硅钢片作为铁芯,以减少涡流损耗及磁滞损耗。
5.2机械效应——电磁阻尼与电磁驱动金属与磁铁之间发生相对运动时,金属内部会产生涡流,涡流是由于它们之间发生相对运动而引起的,因而涡流是会阻碍它们之间的相对运动的,这就是涡流的机械效应。
一方面,若将铜片或铝片悬挂在电磁铁的两极之间作为一个摆,当电磁铁的励磁线圈未通电时,铜片或铝片可以自由摆动,需经过较长的时间才能停下来.但当电磁铁的励磁线圈通电之后,由于穿过运动铜片或铝片的磁通量发生变化,铜片或铝片内将产生涡流.根据电磁感应定律,涡流的效果总是要反抗引起感应电流的原因,所以铜片或铝片的摆动就要受到阻力而迅速停止.在许多电磁仪表中,为了在测量时使指针的摆动能够迅速停止下来,采用类似的电磁阻尼装置.因此涡流的电磁阻尼作用实际上是一种阻碍相对运动的作用。
另一方面,若将可以转动的金属圆盘紧靠磁铁的两极而不接触,则当磁铁旋转时,金属圆盘中产生的涡流将阻碍它与磁铁的相对运动,因而使得金属圆盘跟随磁铁旋转起来.这里,涡流的机械效应表现为电磁驱动.这种驱动作用是因磁铁的旋转而引起的,所以金属圆盘的转速总小于磁铁的转速,这两种转速是异步的.感应式异步电动机就是根据这个道理制成的。
涡流发热的原理涡流发热是指通过在金属或导电材料中产生涡流而使之发热的一种现象。
涡流发热广泛应用于电磁加热、感应加热、电动机和发电机等领域。
其原理是基于法拉第电磁感应定律和焦耳热定律。
首先,根据法拉第电磁感应定律,当导体被磁场穿过时,会在导体内产生涡流。
这是因为当导体被磁场穿过时,磁力线将会切割导体并引起自由电子运动,从而产生涡流。
涡流的方向与磁场的变化速率和导体的电导率有关。
如果磁场变化率较大或导体电导率较高,将产生较大的涡流。
其次,根据焦耳热定律,当涡流被电阻产生阻尼时,会发生热量的产生。
这是因为涡流在通过导体时会受到阻力的影响,阻力的大小取决于导体的电阻,涡流的大小以及磁场的变化速率。
当涡流通过导体时,由于涡流受到的阻力,涡流将会遭到耗散,其电能将会转化为热能。
涡流发热的机制主要包括:1. 磁场穿过导体时,磁力线与导体之间相互作用,导致自由电子偏移,产生涡流。
涡流的大小与磁场的变化速率和导体的电导率有关。
磁场变化速率越大或电导率越高,产生的涡流越大。
2. 涡流在通过导体时会产生电阻,并受到阻尼。
涡流受到的阻尼导致其电能转化为热能,这就是涡流发热的本质。
3. 涡流发热的效果还与导体的形状、尺寸和材料特性有关。
一般来说,导体的厚度越大,涡流通过的路径越长,发热效果越明显。
同样大小的导体,电阻率越大,涡流发热效果越好。
涡流发热具有以下特点:1. 非接触加热:由于涡流是在导体内部产生的,因此不需要直接接触导体,这使得涡流发热在工业生产中具有很大的灵活性。
例如,涡流加热可以用于对金属管道、工件等进行加热处理。
2. 高效加热:涡流发热的效率较高,主要是因为涡流是在导体内部产生的,不会产生热能的传导损失。
涡流作为一种局部加热方式,可以准确控制加热的范围和温度。
3. 快速加热:涡流发热的速度较快,达到设定温度的时间较短。
这是因为涡流作为一种电流,其产生的能量密度较大。
涡流发热在许多应用领域具有重要意义。
在电磁加热中,通过控制涡流的大小和导体的电阻,可以实现对金属的局部加热。
竭诚为您提供优质文档/双击可除涡流热效应演示实验报告篇一:25.涡电流演示实验二十五涡电流演示【仪器介绍】如图25-1所示,由底座、磁铁和三个相同高度的中空铝管(A、b、c)组成。
其中A是管壁完好的铝管,b是管壁上开有狭缝的铝管,c则为管壁上具有许多圆孔的铝管。
Abc【操作与现象】让一块磁铁分别从三个一定高度的中空铝管(A、b、c)顶端落下,其中A是管壁完好的铝管,b是管壁上开有狭缝的铝管,c是管壁上加工出许多圆孔的铝管。
观察并比较在三种情况下磁铁下落的快慢情况。
图25-11.涡电流演示仪图涡电流演示仪实验现象:磁铁在A管中下落得最慢,c管中则稍快些,而在b管中下落速度是最快的。
【原理解析】当大块导体放在变化着的磁场中或相对于磁场运动时,在这块导体中也会出现感应电流。
由于导体内部处处可以构成回路,任意回路所包围面积的磁通量都在变化,因此,这种电流在导体内自行闭合,形成涡旋状,故称为涡电流。
涡电流的热效应:在金属圆柱体上绕一线圈,当线圈中通入交变电流时,金属圆柱体便处在交变磁场中。
我们把铁芯看作由一层一层的圆筒状薄壳所组成,每层薄壳都相当于一个回路。
由于穿过每层薄壳横截面的磁通量都在变化着,根据法拉第电磁感应定律,在相应于每层薄壳的这些回路中都将激起感应电动势并形成环形的感应电流,即涡电流。
由于金属导体的电阻很小,涡电流很大,金属内将产生大量的热。
涡电流的机械效应:(1)电磁阻尼涡电流还可以起到阻尼作用。
利用磁场对金属板的这种阻尼作用,可制成各种电动阻尼器,例如磁电式电表中或电气机车的电磁制动器中的阻尼装置,就是应用涡电流实现其阻尼作用的。
(2)电磁驱动这是对"电磁阻尼作用起着阻碍相对运动"的另一种形式的应用。
感应式异步电动机就利用了这一基本原理。
现象解释:当磁铁下落时,铝管管壁的各环形壳层磁通量发生变化,铝管内就会形成涡电流。
由于涡电流产生的电磁阻尼会阻碍磁铁和金属之间的相对运动。
电饭锅电涡流效应
电饭锅是一种利用电能来加热和烹饪食物的家用电器。
它通过内部的加热元件(一般是加热电阻或发热盘)将电能转化为热能,将内部的锅体加热以煮熟米饭或其他食物。
涡流效应(Eddy Current Effect)是电饭锅中一个可能出现的物理现象之一。
涡流效应指的是当导体材料(如金属)置于变化磁场中时,会产生电流的现象。
在电饭锅的情况下,当电能通过加热元件产生变化的磁场时,锅体(通常是金属制成)作为一个导体,会受到这个变化磁场的影响。
涡流效应可能导致以下情况:
1.能量损耗:由于涡流效应产生了电流,这些电流会在导体内部产生磁场,并导致能量的损耗。
这可能会导致一些能量转化为热量而非直接用于加热食物,这会降低效率。
2.热量分布不均:涡流效应可能导致锅体内部局部热量分布不均匀。
由于涡流效应在导体内部产生热量,可能导致锅底或锅体某些部分温度较高,而其他部分温度较低,从而影响食物的均匀加热。
为了减少涡流效应可能带来的负面影响,一些电饭锅设计采用了特殊的材料、结构或工艺,以降低涡流效应的影响,并提高能量利用率和食物的均匀加热。
这可能包括使用特定的非磁性材料或在设计上对锅底进行改进,以减少涡流效应带来的不利影响。
《涡流》讲义一、什么是涡流当导体处在变化的磁场中,或者导体在磁场中运动时,导体内部会产生感应电流。
这种由于电磁感应在导体内部形成的闭合电流,就叫做涡流。
为了更直观地理解涡流,我们可以想象一个金属圆盘在磁场中旋转。
当磁场发生变化时,磁力线会不断切割金属圆盘,从而在圆盘内部产生一圈圈的电流。
这些电流就像水中的漩涡一样,因此被形象地称为涡流。
二、涡流的产生条件涡流的产生需要两个关键条件:一是存在变化的磁场;二是导体要处于这个变化的磁场中或者在磁场中运动。
变化的磁场可以由多种方式产生。
例如,交流电源产生的交变磁场,或者磁场强度随时间发生改变。
导体在磁场中的运动方式也多种多样,比如平动、转动等。
三、涡流的特点1、环形电流涡流在导体内部呈现为环形电流,其方向遵循电磁感应定律。
2、热效应涡流会使导体发热,这是因为电流在导体中流动时会遇到电阻,从而产生焦耳热。
这种热效应在一些情况下是有益的,比如利用涡流进行金属熔炼和加热处理;但在另一些情况下则是有害的,比如变压器和电机中的铁芯会因为涡流而发热,导致能量损耗和效率降低。
3、趋肤效应涡流在导体中的分布并不是均匀的,而是集中在导体的表面,这种现象被称为趋肤效应。
导体的电阻会随着频率的增加而增大,导致涡流更多地集中在表面。
四、涡流的应用1、涡流加热利用涡流的热效应,可以对金属进行加热处理。
例如,在工业生产中,通过涡流加热可以快速、均匀地加热金属材料,用于锻造、熔炼等工艺。
2、涡流探伤通过检测涡流的变化,可以发现金属材料内部的缺陷。
当金属材料存在裂缝、气孔等缺陷时,涡流的分布会发生改变,从而可以检测出这些缺陷。
3、电磁阻尼在一些需要快速制动或稳定运动的装置中,涡流可以起到电磁阻尼的作用。
例如,在电表的指针中,通过利用涡流产生的阻尼力,可以使指针快速稳定地指示读数。
4、感应加热炊具我们日常生活中的电磁炉就是利用涡流原理进行加热的。
在电磁炉内部产生的交变磁场作用下,锅底产生涡流,从而使锅具迅速发热。
《涡流》讲义一、什么是涡流在物理学中,涡流是一种在导体内部产生的环流电流。
当导体处于变化的磁场中时,导体内部的自由电子会受到洛伦兹力的作用,从而形成闭合的环流,这就是涡流。
为了更形象地理解涡流,我们可以想象一个金属圆盘放置在一个变化的磁场中。
磁场的变化会导致磁力线不断地切割金属圆盘,就好像有无数个小“鞭子”在抽打自由电子,驱使它们运动起来,形成了涡流。
涡流在我们的日常生活和工业生产中有着广泛的应用,但同时也可能带来一些不利的影响。
二、涡流的产生条件要产生涡流,需要两个关键条件:一是要有导体,二是要有变化的磁场。
导体是涡流能够形成的物质基础。
常见的导体如铜、铝等金属,它们内部存在大量自由电子,能够在磁场的作用下自由移动。
变化的磁场则是驱动自由电子运动的动力。
这个磁场的变化可以是磁场强度的改变、方向的变化,或者是磁场的移动等。
三、涡流的特点1、闭合性涡流总是形成闭合的回路,这是由于自由电子在洛伦兹力的作用下不断运动,直到形成一个完整的环流。
2、热效应涡流在导体中流动时会产生热量。
这是因为电子在运动过程中会与导体中的原子发生碰撞,从而将部分能量转化为热能。
这种热效应在一些情况下是有益的,比如电磁炉就是利用涡流的热效应来加热食物;但在另一些情况下,比如变压器的铁芯中,涡流产生的热量会导致能量损耗和设备发热,需要采取措施来减小涡流。
3、集肤效应涡流还有一个重要的特点就是集肤效应。
当交流电流通过导体时,电流密度在导体横截面上的分布是不均匀的,越靠近导体表面,电流密度越大,越往导体内部,电流密度越小。
这是因为涡流在导体表面产生的磁场会削弱外部磁场在导体内部的渗透,从而导致电流主要集中在导体表面。
四、涡流的应用1、感应加热涡流可以用于金属的感应加热。
在工业生产中,需要对一些金属工件进行加热处理,如淬火、回火等。
通过在工件周围产生变化的磁场,从而在工件内部产生涡流,利用涡流的热效应可以快速、均匀地加热工件。
2、电磁阻尼在一些需要快速制动或减震的装置中,涡流可以起到电磁阻尼的作用。
涡流、电磁阻尼和电磁驱动说课稿教案第一章:涡流1.1 涡流的产生讲解涡流的定义:在导体中,由于磁通量的变化,产生感应电流,这种电流称为涡流。
通过示例,展示涡流的产生过程。
1.2 涡流的热效应讲解涡流的热效应:涡流在导体中产生,由于电流的热效应,导致导体温度升高。
通过实验,让学生观察涡流的热效应。
第二章:电磁阻尼2.1 电磁阻尼的定义讲解电磁阻尼的定义:当导体在磁场中运动时,由于电磁力的作用,产生阻力,这种现象称为电磁阻尼。
通过示例,展示电磁阻尼的现象。
2.2 电磁阻尼的应用讲解电磁阻尼的应用:电磁阻尼在现实生活中的应用,如电风扇、电磁制动等。
通过实例,让学生了解电磁阻尼的应用。
第三章:电磁驱动3.1 电磁驱动的原理讲解电磁驱动的原理:利用电磁力,使导体在磁场中受到推力,从而实现驱动。
通过示例,展示电磁驱动的原理。
3.2 电磁驱动的应用讲解电磁驱动的应用:电磁驱动在现实生活中的应用,如电磁炉、电磁推进器等。
通过实例,让学生了解电磁驱动的应用。
第四章:涡流、电磁阻尼和电磁驱动的比较4.1 涡流、电磁阻尼和电磁驱动的异同点讲解涡流、电磁阻尼和电磁驱动的异同点:三者都是利用电磁现象,但产生原理和应用场合不同。
通过对比,让学生理解三者的区别和联系。
4.2 涡流、电磁阻尼和电磁驱动的实际应用场景讲解涡流、电磁阻尼和电磁驱动在实际应用场景中的具体运用。
通过实例,让学生了解三者在实际生活中的应用。
第五章:总结与拓展5.1 总结对涡流、电磁阻尼和电磁驱动进行总结,让学生掌握基本概念和原理。
强调涡流、电磁阻尼和电磁驱动在生产和生活中的重要性。
5.2 拓展讲解涡流、电磁阻尼和电磁驱动在其他领域的应用,如电子设备、能源转换等。
激发学生的学习兴趣,引导他们深入研究电磁现象。
第六章:涡流的应用6.1 涡流检测讲解涡流检测的原理:利用涡流的热效应来检测材料的热导率和电阻率等特性。
通过实验,让学生了解涡流检测的原理和应用。
6.2 涡流加热讲解涡流加热的原理:利用涡流在导体中的热效应,进行金属材料的局部加热。