涡流现象及其应用
- 格式:doc
- 大小:454.50 KB
- 文档页数:9
涡流现象及其应用-粤教版选修3-2教案一、学习目标1.了解涡流现象及其产生机理2.掌握涡流的特征参数3.了解涡流的应用领域二、预备知识1.宏观物理学(力学、热学等)2.微积分3.导电与非导电材料4.涡流的基本概念三、教学过程涡流现象涡流的定义涡流是流体在非定常场或电磁场中,由于压力、速度和密度的非均匀分布而形成的环流,它是流体动力学的重要现象之一。
涡流产生机理涡流是流体在非定常场中的产物。
其具体机理与引起涡流的外场有关。
在外场总体积力为零的情况下,假如在流体内某个点产生了一小团多余的流动,则流体就会受到一定的压力、速度和密度的扰动,这就是形成涡的起点。
由于内流体的黏性,涡就会逐渐衰减,直至消失。
涡流的特征参数涡度涡度是一个刻画涡流强度的指标。
在二维情况下,涡度是描述旋转状况的最基本参数,它是指单位面积内旋转速度的积分。
在三维情况下,涡度被定义为流场中任意一点的径向和切向涡量之和。
涡量涡量是描述涡流大小的指标,它是指一个动量-面积积分,即涡旋面密度与涡旋速度之积。
涡流的应用领域涡流无损检测涡流无损检测是一种检测物体表面缺陷的无损检测技术。
涡流检测器利用涡流效应对物体表面缺陷进行检测,可以用于金属、陶瓷、玻璃等材料的检测。
涡流制冷涡流制冷主要利用磁制冷技术,通过施加磁场使非导体材料发生磁致阻抗效应,从而在非导体内形成涡流,进一步将涡流的热量从材料中传递出来,从而达到降温的目的。
四、实验设计在本节课中将进行实验演示,演示涡流无损检测仪的应用,通过对实验目标的检测,让学生更加深入了解涡流现象及应用。
五、学习反思本节课通过介绍涡流现象及其应用,让学生在物理学科中进一步掌握了涡流知识,并且通过实验演示让学生了解了涡流检测在实际应用中的意义。
2.5 涡流现象及其应用知识点一涡流现象1.涡流:整块导体内部因发生电磁感应而产生旋涡状的感应电流。
2.影响涡流大小的因素:导体的外周长越长,交变磁场的频率越高,涡流就越大。
知识点二涡流现象的应用1.涡流的热效应(1)电磁炉:电磁炉是涡流现象在生活中的应用,采用了磁场感应涡流的加热原理。
(2)高频感应炉:在感应炉中,有产生高频交变电流的大功率电源和产生交变磁场的线圈,其工作原理也是涡流加热。
2.涡流的机械效应(1)电磁驱动:当磁场相对导体运动时,导体中产生的涡流使导体受到安培力,安培力使导体运动起来的现象。
(2)电磁阻尼:当导体相对磁场运动时,导体中产生的涡流使导体受到安培力,并且安培力总是阻碍导体的运动。
(3)电磁阻尼与电磁驱动的比较3.涡流的磁效应涡流探测:通有交变电流的探测线圈,产生交变磁场,当靠近金属物时,在金属物中激起涡流,隐蔽金属物的等效电阻、电感也会反射到探测线圈中,改变通过探测线圈电流的大小和相位,从而探知金属物。
课堂练习【典例1】如图所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是(不计空气阻力)()A.做等幅振动B.做阻尼振动C.振幅不断增大D.无法判定【典例2】(多选)如图所示为用来冶炼合金钢的真空冶炼炉,炉外有线圈,将金属材料置于冶炼炉中,当线圈中通以电流时用感应加热的方法使炉内金属发热。
下列说法中正确的是()A.线圈中通以恒定电流,金属材料中也能产生感应电流B.线圈中通以随时间变化的电流,在金属材料中会产生感应电流C.感应加热是利用金属材料中的涡流冶炼金属的D.感应加热是利用线圈电阻产生的焦耳热冶炼金属的1、电磁炉是利用电磁感应现象产生的涡流,使锅体发热从而加热食物。
下列相关的说法中正确的是( )A.锅体中涡流的强弱与磁场变化的频率有关B.电磁炉中通入电压足够高的直流电也能正常工作C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D.电磁炉的上表面一般都是用金属材料制成,以加快热传递减少热损耗2、如图所示,在一个绕有线圈的可拆变压器铁芯上分别放一小铁锅水和一玻璃杯水。
第七节涡流现象及其应用[学习目标]1.认识什么是涡流,理解涡流的成因及本质.(重点)2.了解涡流加热,涡流制动,涡流探测在生产、生活和科技中的应用.(重点)3.了解在生产、生活中避免或减少涡流的方法.(难点)一、涡流现象1.涡流:整块导体内部因发生电磁感应而产生的感应电流.2.影响涡流大小的因素:导体的外周长越长,交变磁场的频率越高,涡流就越大.二、涡流现象的应用与防止1.涡流的应用(1)电磁灶:电磁灶是涡流现象在生活中的应用,采用了磁场感应涡流的加热原理.(2)感应加热:在感应炉中,有产生高频电流的大功率电源和产生交变磁场的线圈,其工作原理也是涡流加热.(3)涡流制动:当导体在磁场中运动时,会在导体中激起涡流,涡流与磁场相互作用产生一个动态阻尼力,从而提供制动力矩阻碍导体的运动.(4)涡流探测:通有交变电流的探测线圈,产生交变磁场,当靠近金属物时,在金属物中激起涡流,隐蔽金属物的等效电阻、电感也会反射到探测线圈中,改变通过探测线圈电流的大小和相位,从而探知金属物.2.涡流的防止(1)原理:缩小导体的体积,增大材料的电阻率.(2)事例:电机和变压器的铁芯用硅钢片叠压而成.(3)目的:减少电能损失.1.思考判断(正确的打“√”,错误的打“×”)(1)涡流有热效应,但没有磁效应.(×)(2)把金属块放在变化的磁场中可产生涡流.(√)(3)涡流不是感应电流,而是一种有别于感应电流的特殊电流.(×)(4)金属探测器是利用涡流现象.(√)(5)电表线圈用铝框作线圈骨架不是利用涡流现象.(×)2.如图所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是(不计空气阻力)()A.做等幅振动B.做阻尼振动C.振幅不断增大D.无法判定B[小球在通电线圈磁场中运动,小球中产生涡流,故小球要受到安培力作用阻碍它的相对运动,做阻尼振动,故振幅越来越小,A、C、D错误,B正确.] 3.下列做法中可能产生涡流的是()A.把金属块放在匀强磁场中B.让金属块在匀强磁场中做匀速运动C.让金属块在匀强磁场中做变速运动D.把金属块放在变化的磁场中D[涡流就是整个金属块中产生的感应电流,所以产生涡流的条件就是在金属块中产生感应电流的条件,即穿过金属块的磁通量发生变化.而A、B、C 中穿过金属块的磁通量不变化,所以A、B、C错误,把金属块放在变化的磁场中时,穿过金属块的磁通量发生了变化,有涡流产生,所以D正确.]对涡流的理解1.涡流的产生涡流实际上是一种特殊的电磁感应现象,当导体处在变化的磁场中,或者导体在非匀强磁场中运动时,导体内部可以等效成许许多多的闭合电路,当穿过这些闭合电路的磁通量变化时,在导体内部的这些闭合电路中将产生感应电流,即导体内部产生了涡流.2.涡流的特点(1)电流强:当电流在金属块内自成闭合回路(产生涡流)时,由于整块金属的电阻很小,涡流往往很强.(2)功率大:根据公式P=I2R知,热功率的大小与电流的平方成正比,故金属块的发热功率很大.3.能量转化伴随着涡流现象,常见以下两种能量转化.(1)如果金属块放在了变化的磁场中,则磁场能转化为电能,最终转化为内能;(2)如果是金属块进出磁场或在非匀强磁场中运动,则由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.【例1】如图所示,在光滑水平桌面上放一条形磁铁,分别将大小相同的铁球、铝球和木球放在磁铁的一端且给它一个初速度,让其向磁铁滚去,观察小球的运动情况()A.都做匀速运动B.铁球、铝球都做减速运动C.铁球做加速运动,铝球做减速运动D.铝球、木球做匀速运动C[铁球靠近磁铁时被磁化,与磁铁之间产生相互吸引的作用力,故铁球将加速运动;铝球向磁铁靠近时,穿过它的磁通量发生变化,因此在其内部产生涡流,涡流产生的感应磁场对原磁场的变化起阻碍作用,所以铝球向磁铁运动时会受阻碍而减速;木球为非金属,既不能被磁化,也不产生涡流现象,所以磁铁对木球不产生力的作用,木球将做匀速运动.综上所述,C项正确.]涡流现象的分析方法(1)涡流是整块导体中发生的电磁感应现象,分析涡流一般运用楞次定律和法拉第电磁感应定律.(2)导体内部可以等效为许多闭合电路.(3)导体内部发热的原理是电流的热效应.1.电磁炉是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.下列相关的说法中正确的是()A.锅体中涡流的强弱与磁场变化的频率有关B.电磁炉中通入电压足够高的直流电也能正常工作C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D.电磁炉的上表面一般都是用金属材料制成,以加快热传递减少热损耗A[锅体中涡流的强弱与磁场变化的频率有关,故A正确;直流电不能产生变化的磁场,在锅体中不能产生感应电流,电磁炉不能使用直流电,故B错误;锅体只能用铁磁性导体材料,不能使用绝缘材料制作锅体,故C错误;电磁炉的上表面如果用金属材料制成,使用电磁炉时,上表面材料发生电磁感应要损失电能,电磁炉上表面要用绝缘材料制作,故D错误.],对涡流的应用与防止的理解1.电磁阻尼闭合回路的部分导体在做切割磁感线运动产生感应电流时,导体在磁场中就要受到磁场力的作用,根据楞次定律,磁场力总是阻碍导体的运动,于是产生电磁阻尼.2.电磁驱动如果磁场相对于导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来.3.电磁阻尼与电磁驱动的比较由绕OO ′轴转动,两磁极靠近铜盘,但不接触,当磁铁绕轴转动时,铜盘将( )A .以相同的转速与磁铁同向转动B .以较小的转速与磁铁同向转动C .以相同的转速与磁铁反向转动D .静止不动思路点拨:①磁铁转动时,铜盘中会产生涡流.②由楞次定律可分析铜盘的转动.B [因磁铁的转动,引起铜盘中磁通量发生变化而产生感应电流,进而受安培力作用而发生转动,由楞次定律可知安培力的作用是阻碍相对运动,所以铜盘与磁铁同向转动,又由产生电磁感应的条件可知,铜盘中能产生电流的条件必须是磁通量发生变化.故铜盘转动方向与磁铁相同而转速较小,不能与磁铁同速转动,所以正确选项是B.]对电磁阻尼和电磁驱动的理解(1)电磁阻尼是感应电流所受的安培力对导体做负功,阻碍导体运动;而电磁驱动是感应电流所受的安培力对导体做正功,推动导体的运动.(2)在两种情况下,安培力均是阻碍导体与磁场之间的相对运动.(3)在电磁驱动中,主动部分的速度(或角速度)大于被动部分的速度(或角速度).(4)电磁阻尼和电磁驱动都是电磁感应现象,均可以根据楞次定律和左手定则分析导体的受力情况.训练角度1:电磁阻尼问题2.如图所示,用丝线悬挂闭合金属环,悬于O点,第一种情况是虚线左边有匀强磁场,右边没有磁场。
第二种情况是整个空间都有向外的匀强磁场,金属环的摆动情况是()A.两种情况都经过相同的时间停下来B.第一种情况先停下来C.第二种情况先停下来D.无法确定B[只有左边有匀强磁场,金属环在穿越磁场边界时,由于磁通量发生变化,环内一定会有感应电流产生,根据楞次定律将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象.也可以用能量守恒来解释:既然有电流产生,就一定有一部分机械能向电能转化,最后电能通过导体转化为内能.若空间都有匀强磁场,穿过金属环的磁通量不变化,因此不产生感应电流,也就不会阻碍相对运动,摆动就不会很快停下来.故选B .]训练角度2:电磁驱动问题3.如图所示,光滑水平绝缘面上有两个金属环静止在平面上,环1竖直,环2水平放置,均处于中间分割线上,在平面中间分割线正上方有一条形磁铁,当磁铁沿中间分割线向右运动时,下列说法正确的是( )A .两环都向右运动B .两环都向左运动C .环1静止,环2向右运动D .两环都静止C [条形磁铁向右运动时,环1中磁通量保持为零不变,无感应电流,仍静止.环2中磁通量变化。
根据楞次定律,为阻碍磁通量的变化,感应电流的效果是使环2向右运动.]1.如图所示,在一个绕有线圈的可拆变压器铁芯上分别放一小铁锅水和一玻璃杯水.给线圈通入电流,一段时间后,一个容器中水温升高,则通入的电流与水温升高的是()A.恒定直流、小铁锅B.恒定直流、玻璃杯C.变化的电流、小铁锅D.变化的电流、玻璃杯C[通入恒定电流时,所产生的磁场不变,不会产生感应电流,通入变化的电流,所产生的磁场发生变化,在空间产生感生电场,铁锅是导体,感生电场在导体内产生涡流,电能转化为内能,使水温升高.涡流是由变化的磁场在导体内产生的,所以玻璃杯中的水不会升温,故C正确.]2.(多选)如图所示,磁电式仪表的线圈通常是用铝框做骨架,把线圈绕在铝框上,这样做的目的是()A.防止涡流而设计的B.利用涡流而设计的C.起电磁阻尼的作用D.起电磁驱动的作用BC[线圈通电后在安培力作用下转动,铝框随之转动,在铝框内产生涡流,涡流将阻碍线圈的转动,使线圈偏转后尽快停下来,这样做是利用涡流来起电磁阻尼的作用.]3.(多选)位于光滑水平面的小车上水平固定一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线以初速度v0穿入螺线管,并最终穿出,如图所示,在此过程中()A.磁铁做匀速直线运动B.磁铁做减速运动C.小车向右做加速运动D.小车先加速后减速BC[磁铁水平穿入螺线管时,螺线管中将产生感应电流,由楞次定律可知产生的感应电流将阻碍磁铁的运动;同理,磁铁穿出时,由楞次定律可知产生的感应电流将阻碍磁铁的运动,故整个过程中,磁铁做减速运动,选项A错误,B 正确.对于小车上的螺线管来说,螺线管受到的安培力方向始终为水平向右,这个安培力使螺线管和小车向右运动,且一直做加速运动,选项C正确,D错误.] 4.(多选)如图所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝处产生大量热量,将金属熔化,把工件焊接在一起,而工件其他部分发热很少,以下说法正确的是()A.交流电的频率越高,焊缝处的温度升高得越快B.交流电的频率越低,焊缝处的温度升高得越快C.工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D.工件上只有焊缝处温度升得很高是因为焊缝处的电阻大AD[交流电频率越高,则产生的感应电流越大,升温越快,工件电流相同,电阻越大,温度越高,放热越多.]。