大学物理机械振动
- 格式:ppt
- 大小:1.11 MB
- 文档页数:10
第5章 机械振动一、基本要求1.掌握描述简谐运动各物理量的物理意义及相互关系,能根据给定的初始条件建立简谐运动方程;2.掌握旋转矢量法,并能用以求解初相、相位、相位差、时间差;理解简谐运动合成规律; 3.理解振幅、周期、频率、相位等描述机械波的重要物理量。
二、基本内容(一)本章重点和难点:重点:理解简谐运动特征并能根据给定的初始条件写出简谐运动方程。
难点:掌握旋转矢量法在解题中的应用。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧=+===⎪⎩⎪⎨⎧=+''+=-=李萨如图形垂直方向频率整数比椭圆运动垂直方向同频率拍同方向不同频率仍为简谐运动同方向同频率简谐运动的合成总能量弹性势能动能简谐运动的能量复摆单摆弹簧振子典型例子初相相位角频率频率周期振幅基本物理量谐运动微分方程谐运动方程回复力公式简谐运动的定义振动::::212121,,:,,,,,:0:)cos(::2222kA E E E kx E m v E x x t A x kx F p k p k ωϕω(三)容易混淆的概念: 1.初相和相位简谐振动运动方程 简谐振动能量 简谐振动合成速度方程 加速度方程 动能 势能 合振幅合相位初相ϕ反映简谐运动物体在初始时刻的运动状态;相位ϕω+t 反映简谐运动物体在任意时刻的运动状态。
2.角频率和频率角频率(圆频率)ω反映角位置随时间的变化,对于谐振子而言,由劲度系数和质量决定,又称固有频率;频率ν是单位时间内完成全振动的次数,是周期的倒数。
(四)主要内容:1.简谐运动的基本概念:(1) 运动方程:)cos(ϕω+=t A x ,A x m =(2) 速度方程:)sin(ϕωω+-=t A v ,A v m ω= (3) 加速度方程:)cos(2ϕωω+-=t A a ,A a m 2ω= (4) 周期:ωπ2=T(5) 频率:πων21==T (6) 时间差与相位差的关系:ωϕ∆=∆t2.旋转矢量法:在平面上画一矢量A ,初始位置与x 轴正方向的夹角等于初相位ϕ,其尾端固定在坐标原点上,其长度等于振动的振幅A ,并以圆频率ω为角速度绕原点作逆时针匀速转动,则矢量A在x 轴上的投影为:)cos(ϕω+=t A x 。
大学物理机械振动总结在物理学领域中,机械振动是指物体在受到外力作用后发生的周期性或非周期性的振动运动。
它是研究物体运动规律和能量传递的重要课题之一。
机械振动存在于我们日常生活的各个方面,从钟摆的摆动到汽车的悬挂系统,无处不体现着机械振动的存在。
首先,机械振动的基本特点是周期性。
在一个振动过程中,物体会在一定的时间间隔内不断重复同样的运动。
这种周期性运动可以用正弦函数或余弦函数来表达,而周期T则是振动的一个重要参数,表示一个完整振动过程所需要的时间。
其次,机械振动的频率是指单位时间内振动次数的多少。
频率f的倒数称为周期T,即T=1/f。
振动的频率越高,单位时间内振动次数越多,相应的周期也就越短。
频率与周期之间存在着倒数的关系,是彼此相互依存的。
频率和周期都是描述振动特征的重要参数,能够直观地表达出振动的快慢和紧凑程度。
再次,机械振动的振幅是指物体在振动过程中离开平衡位置的最大距离。
振幅越大,物体的运动范围也就越大,相应的振动能量也越大。
振幅与振动的能量之间存在着正相关的关系,振幅越大,能量传输的效果越明显。
此外,机械振动还有一个重要的参数叫做相位,用来描述物体在振动过程中的运动状态。
相位可以通过相位角来度量,它的变化范围在0到2π之间。
当相位角为0或2π时,物体达到最大振幅的正向运动;当相位角为π时,物体达到最大振幅的负向运动;当相位角为π/2或3π/2时,物体经过平衡位置,速度达到最大值。
机械振动的实际应用非常广泛。
例如,在建筑领域中,为了保证建筑物的稳定性和抗震性,需要对建筑结构进行振动分析和工程设计。
而在工业生产中,机械设备的振动也是一个重要的研究方向,可以通过合理的设计和调整来降低噪音和振动对设备和操作人员的影响。
此外,机械振动还有许多其他的应用,比如声学研究、航空航天技术等等。
总之,机械振动作为物理学领域中的一个重要分支,在科学研究和工程应用中都具有重要意义。
它的基本特征包括周期性、频率、振幅和相位等,这些特征参数可以用来描述和分析振动的规律和性质。
课程名称:大学物理授课班级:XX级XX班授课时间:2课时教学目标:1. 理解机械振动的概念,掌握简谐振动的特点。
2. 掌握机械振动的基本方程和运动规律。
3. 理解能量守恒原理在机械振动中的应用。
4. 能够分析简单的机械振动问题。
教学重点:1. 简谐振动的定义和特点。
2. 机械振动的基本方程和运动规律。
3. 能量守恒原理在机械振动中的应用。
教学难点:1. 简谐振动方程的推导和应用。
2. 能量守恒原理在复杂机械振动问题中的应用。
教学过程:第一课时一、导入1. 回顾初中物理中学过的振动和波的基本概念。
2. 提出问题:在物理学中,如何描述一个物体在平衡位置附近做周期性运动?二、新课讲解1. 机械振动的概念:物体在平衡位置附近做周期性运动的现象称为机械振动。
2. 简谐振动的定义和特点:- 定义:物体在回复力作用下,沿着某一方向做周期性运动。
- 特点:振动周期T与振幅A无关,振动方程具有正弦或余弦函数形式。
3. 简谐振动方程的推导:- 根据牛顿第二定律,推导简谐振动的微分方程。
- 解微分方程,得到简谐振动方程。
4. 机械振动的基本方程和运动规律:- 位置方程:x = A cos(ωt + φ)- 速度方程:v = -Aω sin(ωt + φ)- 加速度方程:a = -Aω^2 cos(ωt + φ)三、课堂练习1. 已知一个简谐振动的振幅为5cm,周期为4s,求该振动的频率和角频率。
2. 已知一个简谐振动的位置方程为x = 3cm cos(πt/2),求该振动的速度和加速度。
四、小结1. 简谐振动的定义和特点。
2. 机械振动的基本方程和运动规律。
第二课时一、复习1. 回顾上节课所学内容,重点强调简谐振动的定义、特点、方程和运动规律。
二、新课讲解1. 能量守恒原理在机械振动中的应用:- 机械振动过程中,总能量保持不变。
- 机械能包括动能和势能,动能和势能之间可以相互转化。
2. 机械振动中能量守恒的推导:- 根据牛顿第二定律和简谐振动方程,推导机械振动中的能量守恒公式。
第四篇 振动与颠簸第十二章机械振动§ 12-1 简谐振动1、弹簧振子运动如图所取坐标,原点 O 在 m 均衡地点。
现将 m 略向右移到 A ,而后松开,此时,由于弹簧伸长而出现指向均衡地点的弹性力。
在弹性 力作用下,物体向左运动,当经过地点O 时,作用在 m 上弹性力等于 0,可是因为惯性作用, m 将持续向 O 左侧运动,使弹簧压缩。
此时,因为弹簧被压缩, 而出现了指向均衡地点的弹性力并将阻挡物体向左 运动,使 m 速率减小,直至物体静止于B (刹时静止),以后物体在弹性力作用下改变方向,向右运动。
这样在弹性力作用下物体左右来去运动,即作机械振动。
图 12-12、简谐振动运动方程由上剖析知, m 位移为 x (相对均衡点 O )时,它遇到弹性力为(胡克定律) :Fkx(12-1)式中: 当x即位移沿 +x 时,F 沿 -x ,即F0 当 x即位移沿 -x 时,F 沿+x ,即F 0k为弹簧的倔强系数, “—”号表示力 F 与位移 x (相对 O 点)反向。
定义:物体受力与位移正比反向时的振动称为简谐振动。
由定义知,弹簧振子做谐振动。
由牛顿第二定律知,m加快度为aF kxmm( m为物体质量)ad 2 xd 2 x k x∵dt 2∴ dt2mk2∵ k、 m均大于 0,∴可令m可有:d 2 x2 x 0(12-2)dt 2式 (12-2) 是谐振动物体的微分方程。
它是一个常系数的齐次二阶的线性微分方程,它的解为x Asin t'(12-3)或x Acos t(12-4)'2式 (12-3)(12-4) 是简谐振动的运动方程。
所以,我们也能够说位移是时间t 的正弦或余弦函数的运动是简谐运动。
本书顶用余弦形式表示谐振动方程。
3、谐振动的速度和加快度物体位移:xAcos tdxAsin tV(12-5)速度:dtd 2 xa2 Acos t 2 x加快度:dt 2(12-6)可知:Vmax A amax 2 Ax t、V t 、 at 曲线以下图 12-2图 12-3第十二章机械振动沈阳工业大学郭连权(教授)说明:(1)Fkx 是谐振动的动力学特点;(2) a2 x是谐振动的运动学特点;(3)做谐振动的物体往常称为谐振子。
一、教学目标1. 知识目标:(1)理解机械振动的概念,掌握振动的分类和特点。
(2)掌握简谐振动的基本概念、特征量及其相互关系。
(3)掌握谐振动的能量、运动学特征和动力学特征。
(4)了解振动合成、频谱分析、阻尼振动和受迫振动等概念。
2. 能力目标:(1)能运用简谐振动的基本理论解决实际问题。
(2)能分析振动系统的稳定性,掌握振动控制方法。
3. 情感目标:(1)激发学生对物理学的兴趣,培养学生严谨的科学态度。
(2)培养学生团队合作精神,提高学生的综合素质。
二、教学内容1. 机械振动的概念及分类2. 简谐振动的基本概念、特征量及其相互关系3. 简谐振动的能量、运动学特征和动力学特征4. 振动合成5. 频谱分析6. 阻尼振动和受迫振动三、教学过程第一课时1. 导入新课通过生活中的实例,如钟摆、弹簧振子等,引入机械振动的概念。
2. 讲解机械振动的分类及特点(1)机械振动的分类:自由振动、受迫振动、阻尼振动。
(2)自由振动的特点:周期性、等幅性、能量守恒。
3. 讲解简谐振动的基本概念、特征量及其相互关系(1)简谐振动的定义:物体在平衡位置附近作等幅、周期性、有规律的往复运动。
(2)简谐振动的特征量:振幅、周期、频率、相位。
(3)特征量之间的关系:T = 2π/ω,f = 1/T。
4. 讲解简谐振动的能量、运动学特征和动力学特征(1)能量:动能和势能。
(2)运动学特征:速度、加速度。
(3)动力学特征:弹性力、恢复力。
第二课时1. 讲解振动合成(1)同方向同频率谐振动的合成:叠加原理。
(2)同方向不同频率谐振动的合成:矢量合成。
(3)相互垂直的两个振动的合成:平行四边形法则。
2. 讲解频谱分析(1)频谱的定义:将信号分解为不同频率的成分。
(2)频谱分析的方法:傅里叶变换。
3. 讲解阻尼振动和受迫振动(1)阻尼振动:系统受到阻力作用,能量逐渐耗散。
(2)受迫振动:系统受到外部周期性力的作用,产生振动。
第三课时1. 课堂小结回顾本节课所学内容,强调重点和难点。