3
例:
R(S) -
K S ( 0 . 5 S + 1)
C(S)
K →∞
2K 闭环传递函数 Φ ( s ) = 2 S + 2S + 2K
特征方程式
K=0.5 K=0
S + 2 S + 2 K =0
2
×
-1
× 0
K=0
S 1,=- 1 ± 1- 2 K 2
K=0 → ∞
解析法 全部闭环极点,标注在S 全部闭环极点,标注在S 平面上, 平面上,连成光滑的曲线
1+ K
∏( ∏(
j =1 i=1 n
m
s z i) s p j)
= 0
11
法则1 根轨迹起于开环极点, 法则1 根轨迹起于开环极点,终于开环零点
证明
( s- p j) K ∏ s- z i) 0 + ( = ∏
j =1 i =1
n
m
K =0
s = pj
K =∞
s = zi
大部分开环传递函数的极点多于零点,即n>m,可以认 大部分开环传递函数的极点多于零点, n>m, 为在s平面的无限远处有( 个零点。 n, 为在s平面的无限远处有(n-m)个零点。若m > n,必 个极点在s平面的无限远处。 有( m - n )个极点在s平面的无限远处。
4
θ
2
×
θ
×
2 s0
× 0
1
1
σ
由图可见, 点左边开环实数零极点到s 由图可见, s0点左边开环实数零极点到s0点的向 量相角为0, 点右边开环实数零极点到s 量相角为0, s0点右边开环实数零极点到s0点的向 量相角均为π 量相角均为π, s0位于根轨迹上的充要条件是下列 相角条件成立: 相角条件成立: