机动车电子控制系统的核心
- 格式:ppt
- 大小:383.52 KB
- 文档页数:6
汽车电子锁指挥工作原理
汽车电子锁的工作原理如下:
1. 锁控单元:汽车电子锁的核心部件是一台锁控单元,负责接收来自车主或车辆内部按键的指令,并通过控制锁机来完成锁定或解锁操作。
2. 锁机:车门、引擎盖、行李箱等位置配备有电子锁机,利用电动马达或电磁铁等装置来实现锁定或解锁动作。
锁控单元控制锁机时通过发送特定的电信号控制锁机的动作。
3. 电源:汽车电子锁需要供电才能正常工作。
一般情况下,电子锁通过车辆的电力系统供电,包括车辆电瓶供电和车辆的点火开关状态。
4. 信号传输:汽车电子锁通过车载网络、无线电频率或多芯电缆等方式来传输信号和数据,将车主或车辆内部的指令传输给锁控单元,进而控制锁机的动作。
5. 安全保护:汽车电子锁通常配备有防盗功能,如报警装置、防锁破解设计等。
这些功能能够提高汽车的防盗能力,保护车辆和乘客的安全。
总体来说,汽车电子锁通过控制锁机的动作实现车门、引擎盖、行李箱等部位的锁定和解锁。
通过接收信号传输来自车主或车辆内部的指令,把这些指令转化为特定的控制信号,控制锁机的动作。
同时,通过车载网络、无线电频率或电缆等方式进行信号的传输。
最后,汽车电子锁还配备有安全保护功能,提高了车辆的安全性。
汽车电子原理
汽车电子原理是指用于控制和管理汽车各种功能和系统的电子装置和技术。
它通过传感器、控制器和执行器之间的信息交换和信号传输,实现对发动机、变速器、制动、车身稳定性、舒适性和安全等方面的监测和控制。
汽车电子原理的核心是电子控制单元(ECU),它是负责接收和处理传感器信号,并根据内置的算法决策来控制车辆系统工作的“大脑”。
汽车电子原理涉及多个主要模块,每个模块都有其独特的功能和工作原理。
其中,最重要的模块之一是发动机管理系统(EMS)。
该系统通过各种传感器(如进气温度传感器、氧
传感器、曲轴转速传感器等)收集有关发动机工作状态的信息,并使用ECU来计算并控制燃油喷射、点火时机和排放等参数,以实现最佳的燃烧效果和性能。
另一个重要的模块是变速器控制系统。
变速器控制系统通过传感器监测车速、引擎转速和油压等数据,并通过ECU来控制
离合器和齿轮的选择,以实现平滑的换挡和提供适当的动力输出。
车身稳定性控制系统是现代汽车安全性的关键组成部分。
它利用车速传感器、转向传感器和制动压力传感器等信息来监测车辆的稳定性,并通过ECU来控制制动系统和悬挂系统,以防
止车辆在紧急情况下失控或翻车。
此外,汽车电子原理还涉及到诸如制动系统、安全气囊系统、音响系统、导航系统等各种其他模块。
这些系统都有自己特定
的传感器和控制器,并通过ECU来实现相应的功能和控制。
总之,汽车电子原理是一个复杂而庞大的领域,它使得现代汽车能够更加智能化、安全和高效。
通过不断发展和创新,汽车电子原理将为我们带来更多功能和便利性,提高驾驶员和乘客的舒适性和安全性。
目录1 整车控制器控制功能和原理 (1)2 纯电动客车总成分布式网络架构 (1)3 整车控制器开发流程 (3)3.1 整车及控制策略仿真 (4)3.2 整车软硬件开发 (5)3.2.1 整车控制器的硬件开发 (6)3.2.2 整车控制器的软件开发 (10)3.3 整车控制器的硬件在环测试 (12)3.4 整车控制器标定 (15)3.4.1 整车控制器的标定系统 (15)1整车控制器控制功能和原理纯电动客车是由多个子系统构成的系统,主要包括储能、驱动等动力系统,以及其它附件如空调等。
各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。
为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配。
因此,纯电动必须需要一个整车控制器来管理系统中的各个部件。
纯电动车辆以整车控制器为主节点的、基于高速CAN总线的分布式动力系统控制网络,通过该网络,整车控制器可以对纯电动车辆动力链的各个环节进行管理、协调和监控,提高整车能量利用效率,确保车辆安全性和可靠性。
整车控制器的功能如下:1)车辆驾驶:采集司机的驾驶需求,管理车辆动力。
2)网络管理:监控通信网络,信息调度,信息汇总,网关。
3)仪表的辅助驱动。
4)故障诊断处理:诊断传感器、执行器和系统其他部件故障并进行相应的故障处理,实时显示故障。
5)在线配置和维护:通过车载标准CAN端口,进行控制参数修改,匹配标定,功能配置,监控,基于标准接口的调试能力等。
6)能量管理:通过对纯电动客车载耗能系统(如空调、电动泵等)的协调和管理,以获得最佳的能量利用率。
7)功率分配:通过综合车辆信息、电池的SOC、温度、电压、电流和电机的温度等信息计算电机功率分配,进行有效的能量管理,以保证车辆能量效率达到最优。
8)坡道驻车辅助控制9)坡道起步时防溜车控制2纯电动客车动力总成分布式网络架构纯电动客车是由多个子系统构成的复杂系统。
比亚迪超级混动dmi工作原理
比亚迪超级混动DMI技术由比亚迪提出,是一项集成汽车动力切换的核心技术。
它是
一种在传统内燃机和电动机之间实现高效能转换的混合技术,其中包括机械和电子系统单元。
比亚迪超级混动DMI系统具有多种动态控制策略,可实现高效动力转换,提供用户可
靠的服务。
比亚迪超级混动DMI,简称DMI,主要由运转滑轮,摆线针轮和电机-变速器组件组成,采用两级变速器结构,可以将能量从电动机和发动机传输到车辆传动系统中,完成机动车
的动力切换, store 等。
DMI工作原理如下:
1、电机-变速器系统:DMI系统是一种组合电控变速系统,其中以内燃机、电动机以
及辅助电机和变速器为驱动器和动力转换元件,组成电动变矩器和电动变速器,实现内燃
机和电动机的高效化切换。
2、滑轮:CW系统的关键组件之一,通过可调电动机控制其旋转,以调节内燃机和电
动机的输出,实现机动车的动力转换, store 等。
3、摆线针轮:可将传动力从电动变速器传输到传动轴,实现机动车的驱动力转换,
并能实现经济性驾驶。
以上就是比亚迪超级混动DMI工作原理的大致介绍,该技术可以有效降低汽车的油耗,节省能源,减少环境污染,是一项能源革命性的技术。
它的发展将大大改善汽车的性能和
汽车行业的可持续发展。
汽车智能传感器智能传感器智能传感器(intelligent sensor)是具有信息处理功能的传感器。
智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。
一般智能机器人的感觉系统由多个传感器集合而成,采集的信息需要计算机进行处理,而使用智能传感器就可将信息分散处理,从而降低成本。
与一般传感器相比,智能传感器具有以下三个优点:通过软件技术可实现高精度的信息采集,而且成本低;具有一定的编程自动化能力;功能多样化。
汽车智能传感器现代汽车正朝着智能化、自动化和信息化的机电一体化产品方向发展,以达到“人-汽车-环境”的完美协调。
汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。
目前,一般汽车装配有几十到近百个传感器,而高级豪华汽车更是有大约几百个传感器。
汽车传感器在汽车上主要用于发动机控制系统、底盘控制系统、车身控制系统和导航系统。
它的应用大大提高了汽车电子化的程度,增加了汽车驾驶的安全系数。
发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。
这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。
底盘控制用传感器是指用于变速器控制系统、悬架控制系统、动力转向系统、制动防抱死系统等底盘控制系统中的传感器。
这些传感器尽管分布在不同的系统中,但工作原理与发动机中相应的传感器是相同的。
而且,随着汽车电子控制系统集成化程度的提高和CAN-BUS技术的广泛应用,同一传感器不仅可以给发动机控制系统提供信号,也可为底盘控制系统提供信号。
车身控制用传感器主要用于提高汽车的安全性、可靠性和舒适性等。
由于其工作条件不象发动机和底盘那么恶劣,一般工业用传感器稍加改进就可以应用。
汽车电控系统工作原理
汽车电控系统是现代汽车中至关重要的一部分,它负责监控和控制车辆的各种功能,以确保车辆的安全性、性能和燃油效率。
汽车电控系统包括发动机控制单元(ECU)、变速器控制单元、刹车控制系统、空调控制系统等。
这些系统通过传感器和执行器之间的信息交换和控制来实现汽车的各种功能。
汽车电控系统的工作原理可以简单概括为以下几个步骤:
1. 传感器采集数据,汽车上安装了各种传感器,如氧传感器、车速传感器、油门位置传感器等,它们负责监测车辆的各种参数,如发动机转速、车速、油门开度等。
2. 数据处理,传感器采集到的数据被送往发动机控制单元(ECU)等控制单元,这些控制单元会对数据进行处理和分析,以确定最佳的控制策略。
3. 控制执行器,根据处理后的数据,控制单元会向执行器发送指令,比如调整发动机点火时机、喷油量、变速器换挡等,以实现最佳的动力输出和燃油效率。
4. 反馈控制,在执行器执行指令后,传感器会再次采集数据并反馈给控制单元,以便对控制策略进行调整和优化。
通过这样的过程,汽车电控系统可以实现对发动机、变速器、刹车等关键部件的精准控制,以确保车辆的性能、安全性和燃油效率。
同时,汽车电控系统也为汽车后续的智能化发展提供了基础,例如自动驾驶技术的实现离不开先进的电控系统。
总的来说,汽车电控系统的工作原理是通过传感器采集数据、控制单元处理数据、执行器执行指令和反馈控制的循环过程,以实现对车辆各种功能的精准控制和优化。
这一系统的不断创新和发展将为汽车行业带来更多的便利和安全性。
汽车五大域讲解随着ECU(电子控制单元Electronic Control Unit)的增加,汽车逻辑控制越来越复杂。
域控制器出现的最初逻辑并不是为了减少车辆ECU数量而存在的,而是为了整合数据、增强计算能力而生。
所谓“域”(Domain)即控制汽车的某一大功能模块的电子电气架构的集合,每一个域由一个域控制器进行统一的控制,最典型的划分方式是把全车的电子电气架构分为五个域:动力域、底盘域、车身域、座舱域和自动驾驶域汽车5个主要的功能域:1.动力域∙多种动力系统单元(内燃机,电动机/发电机、电池、变速箱)∙计算和分配扭矩∙变速器管理∙电池监控∙发电机调节支持的通讯类型包括CAN/CAN-FD,GigabitEthernet并对通讯提供SHA-256加密算法支持面向CPUGPU发展,需要支持AdapativeAUTOSAR环境,或支持POSIX标准接口的操作系统。
2.底盘域∙与汽车行驶相关(传动系统、行驶转向、制动系统)∙贴近——控制执行端(感知识别,决策规划,控制执行——智能汽车核心系统)∙在未来自动驾驶车辆上,转向杆、刹车和加速踏板等都将不再保留,更先进的驾驶方式是利用车辆智能感知单元进行分析,工作指令通过线束传递给转向或制动系统来实现自动驾驶。
这项技术就被称为线控技术∙线控底盘5大系统:转向、换挡、油门、悬挂、制动底盘域是与汽车行驶相关,由传动系统、行驶系统转向系统和制动系统共同构成。
随着汽车智能化发展,智能汽车的感知识别、决策规划、控制执行三个核心系统中,与汽车零部件行业最贴近的是控制执行端,也就是驱动控制、转向控制、制动控制等,需要对传统汽车的底盘进行线控改造以适用于自动驾驶。
线控底盘主要有五大系统,分别为线控转向线控制动、线控换挡线控油门线控悬挂,线控转向和线控制动是面向自动驾驶执行端方向最核心的产品。
3.智能座舱域(娱乐,通信)座舱域的常见应用∙语音识别∙手势识别∙显示性能:一芯多屏显示,仪表屏不同尺寸,中控屏,∙虚拟化技术∙安全级别不同的应用进行隔离∙远程控制∙整车OTA智能座舱关键技术:∙基于更高算力的座舱域控制器芯片开发产品集成度更高。
2024年【汽车驾驶员(技师)】考试题及答案1、【单选题】1米=()厘米。
(B)A、10B、100C、1000D、502、【单选题】下列()不是发动机发动机温度过高的主要原因。
(B)A、节温器损坏B、冷却液过多C、点火提前角过大或过小D、风扇V带松紧度过松3、【单选题】下列中()可减少汽油中氮氧化物的排放。
(C)A、碳罐B、闭环控制C、废气再循环系统D、曲轴箱通风4、【单选题】全球定位系统可用英文缩写()表示。
(C)A、GBSB、GSPC、GPSD、CCS5、【单选题】关于液压制动系统卡死的原因。
甲认为:总泵旁通孔或回油孔堵塞就是引起上述故障的原因。
乙认为:制动蹄摩擦片与制动鼓间隙过小是其中之一。
丙认为:制动管路堵塞是其中之一。
看法正确的是()。
(B)A、甲和乙B、乙和丙C、丙和甲D、均错6、【单选题】减少排气污染要从燃料、润料、()以及尾气三元催化等多方面去治理、控制。
(八)A、发动机7、【单选题】减振器的作用是利用()来加速衰减车身的振动,以改善汽车的行驶平顺性。
(B)A、减震弹簧B、液体流动的阻力C、冷却液D、钢板弹簧8、【单选题】制动防抱死系统的功用是保证汽车在任何路面上进行紧急制动时,自动控制和调节车轮制动力,防止车轮()从而得到最佳制动效果。
(八)A、完全抱死B、跑偏C、侧滑D、滚动9、【单选题】制动防抱死系统的功用是保证汽车在任何路面上进行紧急制动时,自动控制和调节车轮制动力,防止车轮()从而得到最佳制动效果。
(八)A、完全抱死B、跑偏C、侧滑D、滚动10、【单选题】制动防抱死装置中的执行机构由油泵、蓄压器、压力开关、O等部件组成。
(D)A、制动踏板B、车轮速度传感器C、制动器D、液压调节器11、【单选题】化油器式汽油机可燃混合气形成装置主要是指()。
(B)A、空气滤清器B、化油器C、汽油滤清器D、汽油泵12、【单选题】卫星导航系统的核心部分为()。
(八)A、全球定位系统13、【单选题】发动机中曲柄连杆机构的功用是把燃烧气体作用在()的力转变为曲轴的转矩,并通过曲轴对外输出机械能。
《汽车电子控制技术》课程教案学院职业技术学院专业汽车维修工程教育教师王忠良河北师范大学职业技术学院机械系第三节燃油喷射电子控制系统的结构原理一、空气流量传感器作用:检测进入汽缸的空气流量。
空气流量传感器将空气流量变为电信号输入ECU,ECU根据空气流量传感信号决定基本喷油量和点火时间。
(一)空气流量传感器分类根据检测进气量的方式不同,空气流量传感器分为D型(即压力型)和L型(即空气流量型)两种类型。
“D”型来源于德文“Druck(压力)”的第一个字母,是利用压力传感器检测进气歧管内的绝对压力,测量方法属于间接测量法。
装备“D”型传感器的系统称为“D”型燃油喷射系统,控制系统利用该绝对压力和发动机转速来计算吸入汽缸的空气量。
“L”型来源于德文“Luftmengen(空气流量)”的第一个字母,是利用流量传感器直接测量吸入进气管的空气流量。
汽车采用的“L”型传感器分为体积流量型(如翼片式、涡流式)传感器和质量流量型(如热丝式和热膜式)传感器。
(二)翼片式空气流量传感器1.翼片式空气流量传感器的结构安装在空气滤清器与节气门之间的进气管路上翼片式空气流量传感器主要由翼片组件和电位计组件两部分组成。
翼片组件和电位计组件是同轴结构,轴端有盘形回位弹簧。
1)翼片组件由计量翼片和缓冲翼片构成。
计量翼片转过的角度取决于空气流速和回位弹簧的预紧力矩,当进气的作用力与弹簧的回转力平衡时,计量翼片便稳定在某一角度。
空气流量传感器进气通道的旁边还有一个旁通气道。
旁通气道的流通截面积可由一个CO调整螺钉进行调整。
汽油泵开关设置在空气流量传感器内,由滑臂控制。
2)电位计组件当翼片带动电位计转动时,电位计上的滑臂便在电阻片上滑动,使输出电阻变化。
3)工作电路与接线插座图2-194)进气温度传感器图2-192.翼片式空气流量传感器的工作原理电阻转变成ECU接收的电压信号的方法有两种(即空气流量信号的选择方法有两种):方法一:如图所示。
第四章ITS的主要内容ITS的基本功能表现在:减少出行时间、保障交通安全、缓解交通拥挤、减少交通污染等四个方面,其最终目标是建立一个实时、准确、高效的交通运输管理系统。
ITS的基本功能模块包括:先进的出行者信息系统(ATIS),先进的交通管理系统(ATMS),先进的公共交通系统(APTS),先进的车辆控制系统(A VCS),以及商用车运营管理系统、先进的乡村运输系统、自动公路系统等。
考虑到系统在国外、国内投入运营的情况,这里对前四个子系统进行重点介绍,并结合各子系统的特点,选择不同的侧重点分别予以讨论。
第一节先进的出行者信息系统(ATIS)1. 基本概念该系统主要是对交通出行者提供及时的信息服务。
在出行前,通过办公室或家庭的计算机终端、咨询电话、咨询广播系统等,向出行者提供当前的交通和道路状况以及服务信息,帮助出行者选择出行方式、出行时间和出行路线;在出行途中,通过车载信息单元或路边动态信息显示板,向出行者提供道路条件、交通状况、车辆运行情况、交通服务等实时信息,通过路径诱导系统对车辆定位和导航,使汽车始终行驶在最佳路线上,使出行者以最佳的出行方式和路线到达目的地。
ATIS可以通过车载设施、可变标志、交通信息广播、移动电话等,向驾驶员提供互动信息,让他们始终行驶在最短路线上。
ATIS提供的信息可以分为三类:出行前信息·33·◆途中信息◆目的地信息2. ATIS在日本的应用1990年,日本开始研发VICS(Vehicle Information and Communication System)项目,在日本建立了第一个全国统一的提供交通信息服务的通信系统。
VICS采用三种通讯方式:红外信标,安装于道路的主要路段;短波信标,安装于乡村区域的道路和高速公路;调频副载波广播。
VICS在1996年4月正式开始信息服务,覆盖区域包括东京等大城市及主要高速公路。
VICS播放的实时交通信息包括:主要地点间的交通信息、交通拥挤、法规、事故、广域的最优路径信息和道路施工、天气情况及停车场信息等。