【中小学资料】2018版高考数学一轮复习 第十章 计数原理 10.1 分类加法计数原理与分布乘法计数原理 理
- 格式:doc
- 大小:238.00 KB
- 文档页数:9
专题10.1 计数原理【考纲要求】1. 理解分步计数原理和分类计数原理,并能用这两个原理分析和解决一些简单的实际问题.2.了解排列、组合的意义,理解排列数、组合数计算公式,并能用它们解决一些简单的实际问题.3.了解组合数的性质.【考向预测】1. 计数原理的应用2. 排列数的应用3. 组合数的应用【知识清单】1. 分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=__m1+m2+…+m n__种不同的方法.知识点二分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=__m1·m2·…·m n__种不同的方法.重要结论分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成这件事.2.排列与排列数(1)排列的定义:从n个__不同__元素中取出m(m≤n)个元素,按照一定的__顺序__排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同排列__的个数叫做从n个不同元素中取出m个元素的排列数,用符号__A m n__表示.(3)排列数公式:A m n=__n(n-1)(n-2)…(n-m+1)__.(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n×(n-1)×(n-2)×…×2×1=__n!__.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=__1__.3.组合与组合数(1)组合的定义:一般地,从n个__不同__元素中取出m(m<n)个元素__合成一组__,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同组合__的个数,叫做从n个不同元素中取出m个元素的组合数,用符号__C m n__表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,这里规定Cn=__1__.(4)组合数的性质:①C m n=__C n-mn __;②C m n+1=__C m n__+__C m-1n__.重要结论对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.【考点分类剖析】考点一计数原理例1.6人分乘两辆不同的出租车,每辆车最多乘4人,则不同的乘车方案数为()A.70B.60C.50D.40例2.要将甲、乙、丙、丁4名同学分别到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为__ __.(用数字作答)例3(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有__ __种不同的报名方法.【变式探究】1.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有__ __种(用数字作答).2.某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有()A.320种B.360种C.370种D.390种考点二两个计数原理的综合应用例1.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有()A.512B.192C.240D.108例2.将一个四棱锥的每个顶点染上1种颜色,并使同一条棱的两个端点异色,若只有4种颜色可供使用,则不同的染色方法有()A.48种B.72种C.96种D.108种【变式探究】1.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24种B.48种C.72种D.96种2.由数字0,1,2,3组成的无重复数字的4位数,比2 019大的有()个()A.10B.11C.12D.13考点三排列问题——自主练透例1.有3名男生、4名女生,在下列不同条件下,不同的排列方法总数,分别为:(1)选其中5人排成一排;__ __(2)排成前后两排,前排3人,后排4人;__ __(3)全体排成一排,甲不站排头也不站排尾;__ __(4)全体排成一排,女生必须站在一起;__ __(5)全体排成一排,男生互不相邻;__ __(6)全体排成一排,甲、乙两人中间恰好有3人;__ __(7)全体排成一排,甲必须排在乙前面;__ _(8)全部排成一排,甲不排在左端,乙不排在右端.__ _【变式探究】1. 某车队有6辆车,现要调出4辆按一定的顺序出去执行任务,要求甲、乙两车必须参加,且甲车要先于乙车开出,则共有__ __种不同的调度方法.(用数字填写答案)2.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F,6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为()A.36种B.48种C.56种D.72种考点四组合问题——师生共研例1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.49C.56D.28例2.福建省第十六届运动会于2018年在宁德召开,组委会预备在会议期间将A,B,C,D,E,F这六名工作人员分配到两个不同的地点参与接待工作.若要求A,B必须在同一组,且每组至少2人,则不同的分配方法有()A.15种B.18种C.20种D.22种【变式探究】我国进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为()A.30B.60C.90D.120考点五排列、组合的综合应用例1.(1)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有__ __种.(2)某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是()A.16B.24C.8D.12例2.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48B.72C.90D.96例3.按下列要求分配6本不同的书,各有多少种不同的分配方式?将答案填在对应横线上.①分成三份,1份1本,1份2本,1份3本;__ __②甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;__ __③平均分成三份,每份2本;__ __④平均分配给甲、乙、丙三人,每人2本;__ _;⑤分成三份,1份4本,另外两份每份1本;__ __⑥甲、乙、丙三人中,一人得4本,另外两人每人得1本;__ __⑦甲得1本,乙得1本,丙得4本._ __【变式探究】1. 某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念,已知农场主人站在中间,两名男生不相邻,则不同的站法共有__ __种.2.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有() A.36种B.42种C.48种D.60种3.为抗击新冠疫情,5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则不同的分配方案有__ __种.专题10.1 计数原理【考纲要求】1. 理解分步计数原理和分类计数原理,并能用这两个原理分析和解决一些简单的实际问题.2.了解排列、组合的意义,理解排列数、组合数计算公式,并能用它们解决一些简单的实际问题.3.了解组合数的性质.【考向预测】1. 计数原理的应用2. 排列数的应用3. 组合数的应用【知识清单】1. 分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=__m1+m2+…+m n__种不同的方法.知识点二分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=__m1·m2·…·m n__种不同的方法.重要结论分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成这件事.2.排列与排列数(1)排列的定义:从n个__不同__元素中取出m(m≤n)个元素,按照一定的__顺序__排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同排列__的个数叫做从n个不同元素中取出m个元素的排列数,用符号__A m n__表示.(3)排列数公式:A m n=__n(n-1)(n-2)…(n-m+1)__.(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n×(n-1)×(n-2)×…×2×1=__n!__.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=__1__.3.组合与组合数(1)组合的定义:一般地,从n个__不同__元素中取出m(m<n)个元素__合成一组__,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同组合__的个数,叫做从n个不同元素中取出m个元素的组合数,用符号__C m n__表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,这里规定Cn=__1__.(4)组合数的性质:①C m n=__C n-mn __;②C m n+1=__C m n__+__C m-1n__.重要结论对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.【考点分类剖析】考点一计数原理例1.6人分乘两辆不同的出租车,每辆车最多乘4人,则不同的乘车方案数为(C) A.70B.60C.50D.40[解析]C46+C36+C26=50或C46·A22+C36=50.故选C.例2.要将甲、乙、丙、丁4名同学分别到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为__12__.(用数字作答)[解析]由题意可分两类,第一类,甲与另一人一同分到A,有6种;第二类,甲单独在A,则两人在B有C23=3种或两人在C有C23=3种,共有6种,共12种.例3(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(B)A.24B.18C.12D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有__120__种不同的报名方法.[解析](1)从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【变式探究】1.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有__36__种(用数字作答).2.某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有(B)A.320种B.360种C.370种D.390种[解析] 1.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).2.第一步安排周五2名,有C26=15(种)方法;第二步安排周一至周四,有A44=24(种)方法,故不同的安排方法共有15×24=360种,故选B.考点二两个计数原理的综合应用例1.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有( D )A .512B .192C .240D .108[解析] 能被5整除的四位数末位是0或5的数,因此分两类,第一类,末位为0时,其它三位从剩下的数中任意排3个即可,有A 35= 60个,第二类,末位为5时,首位不能排0,则首位只能从1,2,3,4选1个,第二位和第三位从剩下的4个数中任选2个即可,有A 14·A 24= 48个,根据分类计数原理得可以组成60+48 =108个不同的能被5整除的四位数,故选D .例2.将一个四棱锥的每个顶点染上1种颜色,并使同一条棱的两个端点异色,若只有4种颜色可供使用,则不同的染色方法有( B )A .48种B .72种C .96种D .108种[解析]如图四棱柱P -ABCD ,涂P 有4种方法⇒涂A 有3种方法⇒涂B 有2种方法⇒涂C ⎩⎪⎨⎪⎧ C 与A 同色有1种方法C 与A 不同色有1种方法⇒涂D ⎩⎪⎨⎪⎧有2种方法有1种方法,则不同的涂法共有4×3×2×(1×2+1×1)=72种,故选B . 【变式探究】1.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( C )A .24种B .48种C .72种D .96种2.由数字0,1,2,3组成的无重复数字的4位数,比2 019大的有()个(B)A.10B.11C.12D.13考点三排列问题——自主练透例1.有3名男生、4名女生,在下列不同条件下,不同的排列方法总数,分别为:(1)选其中5人排成一排;__2_520__(2)排成前后两排,前排3人,后排4人;__5_040__(3)全体排成一排,甲不站排头也不站排尾;__3_600__(4)全体排成一排,女生必须站在一起;__576__(5)全体排成一排,男生互不相邻;__1_440__(6)全体排成一排,甲、乙两人中间恰好有3人;__720__(7)全体排成一排,甲必须排在乙前面;__2_520__(8)全部排成一排,甲不排在左端,乙不排在右端.__3_720__ [解析](1)从7个人中选5个人来排,是排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人排在前排,有A37种方法,余下4人排在后排,有A44种方法,故共有A37·A44=5 040(种).事实上,本小题即为7人排成一排的全排列,无任何限制条件.(3)优先法:解法一:(元素分析法)甲为特殊元素.先排甲,有5种方法;其余6人有A66种方法,故共有5×A66=3 600种.解法二:(位置分析法)排头与排尾为特殊位置.排头与排尾从非甲的6个人中选2个排列,有A26种方法,中间5个位置由余下5人进行全排列,有A55种方法,共有A26×A55=3 600种.(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44×A44=576种.(5)(插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1 440种.(6)把甲、乙及中间3人看作一个整体,第一步先排甲、乙两人,有A22种方法;第二步从余下5人中选3人排在甲、乙中间,有A35种;第三步把这个整体与余下2人进行全排列,有A33种方法.故共有A22·A35·A33=720种.(7)消序法:A772!=2 520.(8)间接法:A77-2A67+A55=3 720.位置分析法:分甲在右端与不在右端两类.甲在右端的排法有A66(种)排法,甲不在右端的排法有5×5A55(种)排法,∴共有A66+25A55=3 720(种).【变式探究】1.某车队有6辆车,现要调出4辆按一定的顺序出去执行任务,要求甲、乙两车必须参加,且甲车要先于乙车开出,则共有__72__种不同的调度方法.(用数字填写答案)2.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F,6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为(D)A.36种B.48种C.56种D.72种[解析](1)C24C24A22=72.或C24·A442=72(2)①领导和队长站在两端,有A22=2种情况,②中间5人分2种情况讨论:若BC相邻且与D相邻,有A22A33=12种安排方法,若BC相邻且不与D相邻,有A22A22A23=24种安排方法,则中间5人有12+24=36种安排方法,则有2×36=72种不同的安排方法;故选D.考点四组合问题——师生共研例1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(B)A.85B.49C.56D.28[解析]∵丙没有入选,∴可把丙去掉,总人数变为9个.∵甲、乙至少有1人入选,∴可分为两类:一类是甲、乙两人只选一人的选法有C12·C27=42(种),另一类是甲、乙都入选的选法有C22·C17=7(种),根据分类加法计数原理知共有42+7=49(种).例2.福建省第十六届运动会于2018年在宁德召开,组委会预备在会议期间将A,B,C,D,E,F这六名工作人员分配到两个不同的地点参与接待工作.若要求A,B必须在同一组,且每组至少2人,则不同的分配方法有(D)A.15种B.18种C.20种D.22种[解析]先从两个不同的地点选出一地点分配A,B两人,有C12=2(种)情况,再将剩余4人分入两地有三种情况,4人都去A,B外的另一地点,有1种情况;有3人去A,B外的另一地点,有C34=4(种)情况;有2人去A,B外的另一地点,有C24=6(种)情况.综上,共有2×(1+4+6)=22(种),故选D.【变式探究】我国进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为(D)A.30B.60C.90D.120[解析](1)问题等价于将这3盏关着的灯插入4盏亮着的灯形成的5个空档中,所以关灯方案共有C35=10种.(2)有两种情况,①一艘航母配2艘驱逐舰和1艘核潜艇,另一艘航母配3艘驱逐舰和2艘核潜艇,②一艘航母配2艘驱逐舰和2艘核潜艇,另一艘航母配3艘驱逐舰和1艘核潜艇,C12·(C25C13+C25C23)=120,故选D.考点五排列、组合的综合应用例1.(1)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有__120__种.(2)某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是(A)A.16B.24C.8D.12[解析](1)①当甲在首位,丙、丁捆绑,自由排列,共有A44×A22=48种;②当甲在第二位,首位不能是丙和丁,共有3×A33×A22=36种;③当甲在第三位,前两位分为是丙、丁和不是丙、丁两种情况,共A22×A23+A23×A22×A22=36种,因此共48+36+36=120种.(2)根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2(种)情况;②将这个整体与英语全排列,有A22=2(种)情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4(种),则不同排课方案的种数是2×2×4=16,故选A.例2.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为(D)A.48B.72C.90D.96[解析]由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13·A34=72(种)选择方案;②当甲学生不参加任何竞赛时,共有A44=24(种)选择方案.综上所述,所有参赛方案有72+24=96(种).例3.按下列要求分配6本不同的书,各有多少种不同的分配方式?将答案填在对应横线上.①分成三份,1份1本,1份2本,1份3本;__60__②甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;__360__③平均分成三份,每份2本;__15__④平均分配给甲、乙、丙三人,每人2本;__90__;⑤分成三份,1份4本,另外两份每份1本;__15__⑥甲、乙、丙三人中,一人得4本,另外两人每人得1本;__90__ ⑦甲得1本,乙得1本,丙得4本.__30__ [解析](1)①C 16C 25C 33=60;②C 16C 25C 33A 33=360;③C 26C 24C 22A 33=15;④C 26C 24C 22=90;⑤C 26=15;⑥C 46A 33=90; ⑦C 16C 15C 44=30.【变式探究】1.某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念,已知农场主人站在中间,两名男生不相邻,则不同的站法共有__16__种. 2.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B ) A .36种 B .42种 C .48种D .60种3.为抗击新冠疫情,5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则不同的分配方案有__150__种.[解析] (1)先排男生甲有C 14种方法,再排男生乙有C 12种方法,最后排两女生有A 22种方法,故共有C 14C 12A 22=16种方法.另解(间接法):农场主人在中间共有A 44=24种站法,农场主人在中间,两名男生相邻共有2A 22·A 22=8种站法,故所求站法共有24-8=16种.(2)根据题意,最左端只能排甲或乙,可分为两种情况讨论: ①甲在最左端,将剩余的4人全排列,共有A 44=24种不同的排法;②乙在最左端,甲不能在最右端,有3种情况,将剩余的3人全排列,安排好在剩余的三个位置上,此时共有3A 33=18种不同的排法,由分类加法计数原理,可得共有24+18=42种不同的排法,故选B . (3)5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则有两种情况,①将5名专家分成三组,一组3人,另两组都是1人,有C 35=10种方法,再将3组分到3个医院,共有10·A 33=60种不同的分配方案,②将5名专家分成三组,一组1人,另两组都是2人,有C 15·C 24A 22=15种方法,再将3组分到3个医院,共有15·A 33=90种不同的分配方案,根据分类加法计算原理可得一共有60+90=150种不同的分配方案.。
第一节分类加法计数原理与分步乘法计数原理课标要求考情分析1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.1.两个计数原理一般不单独命题,常与排列、组合交汇考查.2.题型以选择题、填空题为主,要求相对较低.知识点两种计数原理基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N =m1×m2×…×m n 种不同的方法1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)2.小题热身(1)从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为(B)A.6B.5C.3D.2(2)已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有(C)A.16种B.13种C.12种D.10种(3)小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有(A)A.7种B.8种C.6种D.9种(4)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有48种.(用数字作答)(5)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有32条不同的路线.解析:(1)“完成这件事”即选出1人当主持人,可分选女主持人和男主持人两类进行,分别有3种选法和2种选法,所以共有3+2=5种不同的选法.(3)要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法.不同的买法共有2+3+2=7(种).(4)根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.(5)不同路线共有3×4+4×5=32(条).考点一分类加法计数原理的应用【例1】(1)已知椭圆x2a2+y2b2=1,若a∈{2,4,6,8},b∈{1,2,3,4,5,6,7,8},这样的椭圆有________个.()C.28 D.32(2)我们把中间位数上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.【解析】(1)解法1:若焦点在x轴上,则a>b,a=2时,有1个;a=4时,有3个;a=6时,有5个;a=8时,有7个,共有1+3+5+7=16个.若焦点在y轴上,则b>a,b=3时,有1个;b=4时,有1个;b=5时,有2个;b=6时,有2个;b=7时,有3个;b=8时,有3个.共有1+1+2+2+3+3=12个.故共有16+12=28个.解法2:a=b时有4种情况,故椭圆个数为4×8-4=28个.(2)根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2种(132,231);第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有6种;第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有12种;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.【答案】(1)C(2)20方法技巧(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.1.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,则不同的取法共有(B) A.120种B.16种解析:书架上有3+5+8=16(本)书,则从中任取1本书,共有16种不同的取法.故选B.2.将编号为1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有(B)A.16种B.12种C.9种D.6种解析:由题意可知,这四个小球有两个小球放在一个盒子中,当1号与2号小球放在同一盒子中时,有2种不同的放法;当1号与3号小球放在同一盒子中时,有2种不同的放法;当1号与4号小球放在同一盒子中时,有2种不同的放法;当2号与3号小球放在同一盒子中时,有2种不同的放法;当2号与4号小球放在同一盒子中时,有2种不同的放法;当3号与4号小球放在同一盒子中时,有2种不同的放法.因此,由分类加法计数原理可知,不同的放球方法共有12种.故选B.考点二分步乘法计数原理的应用【例2】(1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6 B.12C.24 D.36(2)有6名同学报名参加三个智力项目,每项限报一人,三个项目都有人报,且每人至多参加一项,则共有________种不同的报名方法.【解析】(1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【答案】(1)A(2)120方法技巧利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有63种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成18个不同的二次函数,其中偶函数有6个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.考点三两个计数原理的综合应用命题方向1计数问题【例3】高考结束后6名同学游览我市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有()A.A26×A45种B.A26×54种C.C26×A45种D.C26×54种【解析】根据题意,分2步进行分析:①先从6名同学中任选2人,去日月湖景区旅游,有C26种方案,②对于剩下的4名同学,每人都有5种选择,则这4人有5×5×5×5=54种方案,则有且只有两名同学选择日月湖景区的方案有C26×54种,故选D.【答案】 D命题方向2与几何有关的问题【例4】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18 C.24D.36【解析】第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).【答案】 D命题方向3涂色问题【例5】如图一个地区分为五个行政区域,现给该地图着色,要求相邻区域不得使用同一种颜色,现有四种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【解析】由题意可知,当选用三种颜色着色时,由分步乘法计数原理得,有C14C13C12=24(种)方法,当选用四种颜色着色时,由分步乘法计数原理得,有2C14C13C12C11=48(种)方法,再据分类加法计数原理可得有24+48=72(种)方法.【答案】72方法技巧利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.1.(方向1)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同的放法共有(C)A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C.2.(方向2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是(B)A.60 B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”的个数为6×6=36,另外含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.3.(方向3)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有108种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.。
第一节分类加法计数原理与分步乘法计数原理【知识重温】一、必记3个知识点1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事情,共有N=①____________________种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,…,完成第n步有m n种不同的方法,那么完成这件事情共有N=②____________________种不同的方法.3.两个原理的区别与联系分类加法计数原理与分步乘法计数原理,都涉及③____________________的不同方法的种数.它们的区别在于:分类加法计数原理与④________有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与⑤________有关,各个步骤⑥________,只有各个步骤都完成了,这件事才算完成.二、必明2个易误点1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()二、教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各取一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.43.如图,从A城到B城有3条路;从B城到D城有4条路;从A 城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.三、易错易混4.已知a,b∈{2,3,4,5,6,7,8,9},则log a b的不同取值个数为________.5.某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为() A.3+5 B.3×5 C.35D.53202210.1四、走进高考6.[2020·山东卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种考点一分类加法计数原理[自主练透型]1.[2021·湘赣十四校联考]有一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.302.椭圆错误!+错误!=1的焦点在x轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.3.如图,从A到O有________种不同的走法(不重复过一点).悟·技法1。
专题10.1 计数原理1.小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有( )A .7种B .8种C .6种D .9种2.有一排5个信号的显示窗,每个窗可亮红灯、绿灯或者不亮灯,则共可以发出的不同信号有( )种A .25B .52C .35D .533.将5名大学毕业生全部分配给3所不同的学校,不同的分配方案有( )A .8B .15C .125D .2434. 1.A 67-A 56A 45等于( ) A .12B .24C .30D .365.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种6.3名男生和3名女生排成一排,男生不相邻的排法有多少种( )A .144B .90C .260D .1207.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)8.若C 8n =C 2n ,则n =( )A.2 B.8C.10 D.128. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同英文字母可以相同的牌照号码共有()A.(C126)2A410个B.A226A410个C.(C126)2104个D.A226104个9. 在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()A.C16C294B.C16C299C.C3100-C394D.A3100-A39410.某文艺小组有20人,每人至少会唱歌或跳舞中的一种,其中14人会唱歌,10人会跳舞.从中选出会唱歌与会跳舞的各1人,有多少种不同选法?1.用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.2792.某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有()A.510种B.105种C.50种D.以上都不对3.用数字1,2,3组成三位数.(1)假如数字可以重复,共可组成____________个三位数;(2)其中数字不重复的三位数共有____________个;(3)其中必须有重复数字的有____________个.4.若A n10-A n9=n!·126(n∈N+),则n等于()A.4 B.5C.6 D.5或65.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有()种A.720 B.360C.240 D.1206.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A.C28A23B.C28A66C.C28A26D.C28A258.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种9. 有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现在从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法________种.10.一个口袋里装有7个白球和2个红球,从口袋中任取5个球.(1)共有多少种不同的取法;(2)恰有1个为红球,共有多少种取法?11.有五张卡片,正、反面分别写着0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起,共可组成多少个不同的三位数?12..某校为庆祝2015年教师节,安排了一场文艺演出,其中有3个舞蹈节目和4个小品节目,按下面要求安排节目单,有多少种方法:(1)3个舞蹈节目互不相邻;(2)3个舞蹈节目和4个小品节目彼此相间.1.(2020年河北对口高考)某医院为支援湖北疫情,从4名医生和6名护士中选派3名医生和3名护士参加援鄂医疗小分队,不同的选派方法共有( )A.20种B.40种C.60种D.80种2.(2020年河北对口高考)某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场次序有种.3.(2019年河北对口高考)北京至雄安将开通高铁,共设有6 个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12 种B.15 种C.20 种D.30 种4.(2019年河北对口高考)某学校参加2019 北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.5.(2018年河北对口高考)某体育兴趣小组共有4名同学,如果随机分为2组进行对抗赛,每组二名队员,分配方案共有()种A、2B、3C、6D、126.(2017年河北对口高考)从4种花卉中任选3种,分别种在不同形状的3个花盆中,不同的种植方法有()A.81种B.64种C.24种D.4种7.(2017年河北对口高考)为加强精准扶贫工作,某地市委计划从8名处级干部(包括甲、乙、丙三位同志)中选派4名同志去4个贫困村工作,每村一人. 问:(1)甲、乙必须去,但丙不去的不同选派方案有多少种?(2)甲必须去,但乙和丙都不去的不同选派方案有多少种?(3)甲、乙、丙都不去的不同选派方案有多少种?8. (2016年河北对口高考)某生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案的种数为()A.4 B.7 C.10 D.129.(2016年河北对口高考)从5,4,3,2,1中任选三个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率是.10.(2015年河北对口高考)从6名学生中选出2名学生担任数学,物理课代表的选法有()A.10种B.15种C.30种D.45种11.(2015年河北对口高考)从数字1,2,3,4,5中任取三个不同的数,可以作为直角三角形三条边的概率是__________.专题10.1 计数原理1.小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有( A )A .7种B .8种C .6种D .9种[解析] 要完成的“一件事”是“至少买一张IC 电话卡”,分3类完成:买1张IC 卡、买2张IC 卡、买3张IC 卡,而每一类都能独立完成“至少买一张IC 电话卡”这件事.买1张IC 卡有2种方法,买2张IC 卡有3种方法,买3张IC 卡有2种方法.不同的买法共有2+3+2=7种.2.有一排5个信号的显示窗,每个窗可亮红灯、绿灯或者不亮灯,则共可以发出的不同信号有( )种A .25B .52C .35D .53 [答案] C3.将5名大学毕业生全部分配给3所不同的学校,不同的分配方案有( )A .8B .15C .125D .243[答案] D4. 1.A 67-A 56A 45等于( ) A .12B .24C .30D .36 [答案] D [解析] A 67=7×6×A 45,A 56=6×A 45,所以原式=36A 45A 45=36. 5.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C.240种D.288种[答案]B[解析]分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有A14A44=96种不同的排法,由加法原理可得满足条件的排法共有120+96=216种.6.3名男生和3名女生排成一排,男生不相邻的排法有多少种()A.144 B.90C.260 D.120[答案]A[解析]3名女生先排好,有A33种排法,让3个男生去插空,有A34种方法,故共有A33·A34=144种.故选A.7.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)[答案] 1 560[解析]同学两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560条毕业留言.8.若C8n=C2n,则n=()A.2 B.8C.10 D.12[答案]C[解析]由组合数的性质可知n=8+2=10.8. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同英文字母可以相同的牌照号码共有()A.(C126)2A410个B.A226A410个C.(C126)2104个D.A226104个[答案]A[解析]∵前两位英文字母可以重复,∴有(C126)2种排法,又∵后四位数字互不相同,∴有A410种排法,由分步乘法计数原理知,共有不同牌照号码(C126)2A410个.9. 在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()A.C16C294B.C16C299C.C3100-C394D.A3100-A394[答案]C[解析]从100件产品中抽取3件的取法数为C3100,其中全为正品的取法数为C394,∴共有不同取法为C3100-C394.故选C.10.某文艺小组有20人,每人至少会唱歌或跳舞中的一种,其中14人会唱歌,10人会跳舞.从中选出会唱歌与会跳舞的各1人,有多少种不同选法?[解析]只会唱歌的有10人,只会跳舞的有6人,既会唱歌又会跳舞的有4人.这样就可以分成四类完成:第一类:从只会唱歌和只会跳舞的人中各选1人,用分步乘法计数原理得10×6=60(种);第二类:从只会唱歌和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得10×4=40(种);第三类:从只会跳舞和既会唱歌又会跳舞的人中各选1人,用分步乘法计数原理得6×4=24(种);第四类:从既会唱歌又会跳舞的人中选2人,有6种方法.根据分类加法计数原理,得出会唱歌与会跳舞的各选1人的选法共有60+40+24+6=130(种).1.用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279[答案]B[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.2.某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有()A.510种B.105种C.50种D.以上都不对[答案]A[解析]任何一个乘客可以在任一车站下车,且相互独立,所以每一个乘客下车的方法都有5种,由分步计数原理知N=510.故选A.3.用数字1,2,3组成三位数.(1)假如数字可以重复,共可组成____________个三位数;(2)其中数字不重复的三位数共有____________个;(3)其中必须有重复数字的有____________个.[答案](1)27(2)6(3)21[解析](1)排成数字允许重复的三位数,个位、十位、百位都有3种排法,∴N=33=27(个).(2)当数字不重复时,百位排法有3种,十位排法有两种,个位只有一种排法,∴N=3×2×1=6(个)(也可先排个位或十位).(3)当三数必须有重复数字时分成两类:三个数字相同,有3种,只有两个数字相同,有3×3×2=18(个),∴N=3+18=21(个).4.若A n10-A n9=n!·126(n∈N+),则n等于()A.4 B.5C.6 D.5或6[答案]D[解析]本题不易直接求解,可考虑用代入验证法.故选D.5.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有()种()A.720 B.360C.240 D.120[答案]C[解析]因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人全排列共有A55种排法,但甲、乙两人有A22种排法,由分步计数原理可知:共有A55·A22=240种不同的排法.故选C.6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种[答案]D[解析]本题考查了排列与组合的相关知识.4个数和为偶数,可分为三类.四个奇数C45,四个偶数C44,二奇二偶,C25C24.共有C45+C44+C25C24=66种不同取法.分类讨论思想在排列组合题目中应用广泛.7.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A.C28A23B.C28A66C.C28A26D.C28A25[答案]C[解析]第一步从后排8人中抽2人有C28种抽取方法,第二步前排共有6个位置,先从中选取2个位置排上抽取的2人,有A26种排法,最后把前排原4人按原顺序排在其他4个位置上,只有1种安排方法,∴共有C28A26种排法.8.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种[答案]C[解析]本题考查了分步计数原理和组合的运算,从6名男医生中选2人有C26=15种选法,从5名女医生选1人有C15=5种选法,所以由分步乘法计数原理可知共有15×5=75种不同的选法.9. 有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现在从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法________种.[答案]15[解析]C23·C12+C13·C12+C23=15种.10.一个口袋里装有7个白球和2个红球,从口袋中任取5个球.(1)共有多少种不同的取法;(2)恰有1个为红球,共有多少种取法?[解析](1)从口袋里的9个球中任取5个球,不同的取法为C59=C49=126(种);(2)可分两步完成,首先从7个白球中任取4个白球,有C47种取法,然后从2个红球中任取1个红球共有C12种取法,∴共有C12·C47=70种取法.11.有五张卡片,正、反面分别写着0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起,共可组成多少个不同的三位数?[解析]解法1:从0和1两个特殊值考虑,可分三类:第一类,取0不取1,可先从另四张卡片中任选一张作百位,有C14种方法;0可在后两位,有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;除含0的那张外,其他两张都有正面或反面两种可能,因此可组成不同的三位数C14·C12·C13·22个.第二类:取1不取0,同上分析可得不同的三位数有C2422A33个.第三类:0和1都不取,有不同的三位数C3423A33个.综上所述,不同的三位数共有C14C12C1322+C2422A33+C3423A33=432(个).解法2:任取三张卡片可以组成不同的三位数C3523A33(个),其中0在百位的有C2422A22(个),这是不合题意的,故不同的三位数共有C3523A33-C2422A22=432(个).12..某校为庆祝2015年教师节,安排了一场文艺演出,其中有3个舞蹈节目和4个小品节目,按下面要求安排节目单,有多少种方法:(1)3个舞蹈节目互不相邻;(2)3个舞蹈节目和4个小品节目彼此相间.[解析](1)先安排4个小品节目,有A44种排法,4个小品节目中和两头共5个空,将3个舞蹈节目插入这5个空中,共有A35种排法,∴共有A44·A35=1 440(种)排法.(2)由于舞蹈节目与小品节目彼此相间,故小品只能排在1,3,5,7位,舞蹈排在2,4,6位,安排时可分步进行.解法1:先安排4个小品节目在1,3,5,7位,共A44种排法;再安排舞蹈节目在2,4,6位,有A33种排法,故共有A44·A33=144(种)排法.解法2:先安排3个舞蹈节目在2,4,6位,有A33种排法;再安排4个小品节目在1,3,5,7位,共A44种排法,故共有A33·A44=144(种)排法.1.(2020年河北对口高考)某医院为支援湖北疫情,从4名医生和6名护士中选派3名医生和3名护士参加援鄂医疗小分队,不同的选派方法共有( )A.20种 B.40种 C.60种 D.80种【答案】D2.(2020年河北对口高考)某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场次序有种.【答案】144003.(2019年河北对口高考)北京至雄安将开通高铁,共设有6 个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12 种B.15 种C.20 种D.30 种【答案】D4.(2019年河北对口高考)某学校参加2019 北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.【答案】305.(2018年河北对口高考)某体育兴趣小组共有4名同学,如果随机分为2组进行对抗赛,每组二名队员,分配方案共有()种A、2B、3C、6D、12【答案】B6.(2017年河北对口高考)从4种花卉中任选3种,分别种在不同形状的3个花盆中,不同的种植方法有()A.81种B.64种C.24种D.4种【答案】C7.(2017年河北对口高考)为加强精准扶贫工作,某地市委计划从8名处级干部(包括甲、乙、丙三位同志)中选派4名同志去4个贫困村工作,每村一人. 问:(1)甲、乙必须去,但丙不去的不同选派方案有多少种?(2)甲必须去,但乙和丙都不去的不同选派方案有多少种?(3)甲、乙、丙都不去的不同选派方案有多少种?解:(1)甲、乙必须去,但丙不去的选派方案的种数为2454240C P=(2)甲去,乙、丙不去的选派方案的种数为3454240C P=(3)甲、乙、丙都不去的选派方案的种数为4454240C P=8. (2016年河北对口高考)某生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案的种数为()A.4 B.7 C.10 D.12【答案】D9.(2016年河北对口高考)从5,4,3,2,1中任选三个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率是.【答案】2 510.(2015年河北对口高考)从6名学生中选出2名学生担任数学,物理课代表的选法有()A.10种B.15种C.30种D.45种【答案】C11.(2015年河北对口高考)从数字1,2,3,4,5中任取三个不同的数,可以作为直角三角形三条边的概率是__________.【答案】1 10。
第十章 计数原理 10.3 二项式定理 理1.二项式定理二项式定理 (a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *)二项展开式的通项公式T k +1=C k n an -k b k,它表示第k +1项 二项式系数 二项展开式中各项的系数C kn (k ∈{0,1,2,…,n })2.二项式系数的性质 (1)C 0n =1,C nn =1. C mn +1=C m -1n +C mn . (2)C mn =C n -mn . (3)n 是偶数时,12nT +项的二项式系数最大;n 是奇数时,12+n T 与112n T ++项的二项式系数相等且最大.(4)C 0n +C 1n +C 2n +…+C n n =2n. 【知识拓展】二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)C k n an -k b k是二项展开式的第k 项.( × )(2)二项展开式中,系数最大的项为中间一项或中间两项.( × )(3)(a +b )n的展开式中某一项的二项式系数与a ,b 无关.( √ ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( × )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( × )1.(教材改编)(x -y )n的二项展开式中,第m 项的系数是( ) A .C mn B .C m +1n C .C m -1n D .(-1)m -1C m -1n答案 D解析 (x -y )n 展开式中第m 项的系数为C m -1n (-1)m -1.2.(2016·四川)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 4答案 A解析 由题意可知,含x 4的项为C 26x 4i 2=-15x 4.故选A. 3.(2016·云南部分名校1月统一考试)已知6e 11d =⎰n x x,那么⎝ ⎛⎭⎪⎫x -3x n 展开式中含x 2项的系数为( )A .130B .135C .121D .139 答案 B解析 根据题意,66e e 111d ln |6,===⎰n x x x则⎝ ⎛⎭⎪⎫x -3x 6中,由二项式定理得通项公式为T k +1=C k6(-3)k x6-2k,令6-2k =2,得k =2,所以系数为C 26×9=135.4.在(x 2-13x)n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.答案 7解析 由题意知n2+1=5,解得n =8,(x 2-13x)8的展开式的通项T k +1=C k 8(x 2)8-k(-13x)k =48838(1)2C ---k kk kx,。
分类加法计数原理与分步乘法计数原理原理异同点分类加法计数原理分步乘法计数原理定义完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法区别各种方法相互独立,用其中任何一种方各个步骤中的方法互相依存,只有各个法都可以完成这件事步骤都完成才能做完这件事【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n 种方法.( √)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( √)1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279答案B解析由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252。
故选B。
2.(教材改编)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( )A.12 B.8 C.6 D.4答案C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C。
专题十计数原理【考情探究】课标解读考情分析备考指导主题内容一、计数原理、排列、组合1.分类加法计数原理,分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用两个原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.从近几年高考命题情况来看,这一部分主要考查分类加法、分步乘法计数原理以及排列、组合的简单应用.题型以选择题、填空题为主,在解答题中一般将排列、组合知识综合起来,有时也与求事件概率,分布列问题相结合考查.1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数求解所求的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.1.用排列、组合知识解决计数问题时,如果遇到的情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太容易计算时,往往利用表格法、树状图法将其所有的可能一一列举出来,这样会更容易得出结果.2.求解二项展开式的特定项时,即求展开式中的某一项,如第n项,常数项、有理项、字母指数为某些特殊值的项,先准确写出通项T r+1=r a n-r b r,再把系数与字母分离出来(注意符号),最后根据题目中所指定的字母的指数所具有的特征,列出关系式求解即可.二、二项式定理1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.【真题探秘】§10.1计数原理与排列、组合基础篇固本夯基【基础集训】考点计数原理、排列、组合1.甲、乙、丙、丁、戊、己6名同学站成一排照毕业相,要求甲不站在两侧,而且乙和丙相邻、丁和戊相邻,则不同的站法种数为( )A.60B.96C.48D.72答案 C2.在我国第一艘航空母舰“某某舰”的某次舰载机起降飞行训练中,有5架“歼-15”飞机甲、乙、丙、丁、戊准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24B.36C.48D.96答案 C3.中国国家队在2018俄罗斯世界杯亚洲区预选赛12强小组赛中以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种答案 C4.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有( )A.72种B.36种C.24种D.18种答案 B5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种B.360种C.240种D.120种答案 C6.高考结束后6名同学游览某市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有( )A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种答案 D7.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1808.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为.答案12综合篇知能转换【综合集训】考法一排列、组合问题的解题方法1.(2019某某万州二模,6)某中学某班主任要从7名同学(其中3男4女)中选出两名同学,其中一名担任班长,另一名担任学习委员,且这两名同学中既有男生又有女生,则不同的安排方法有( )A.42种B.14种C.12种D.24种答案 D2.(2018某某某某调研性检测,9)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有( )A.250个B.249个C.48个D.24个答案 C3.(2018豫北名校联考,9)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种B.24种C.48种D.36种答案 B4.(2019某某嘉峪关一中模拟)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场顺序的排法种数为.答案605.(2020届某某某某执信中学10月月考,14)有6X卡片分别写有数字1,1,1,2,2,2,从中任取4X,可排出的四位数有个.答案14考法二分组分配问题的解题方法6.(2018某某某某二模,8)某某西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A.90种B.180种C.270种D.360种答案 B7.(2019某某某某第一次统测,11)将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有( )A.72种B.108种C.180种D.360种答案 C8.(2018某某某某一模,5)某学校为了更好地培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有( )A.60种B.90种C.150种D.120种答案 B9.(2020届某某某某一中10月月考,7)小明和小红都计划在国庆节的7天假期中,到某某“两日游”,若他们不同一天出现在某某,则他们出游的不同方案共有( )A.16种B.18种C.20种D.24种答案 C【五年高考】考点计数原理、排列、组合1.(2017课标Ⅱ,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种答案 D2.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9答案 B3.(2015某某,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案 B4.(2016课标Ⅲ,12,5分)定义“规X01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规X01数列”共有( )A.18个B.16个C.14个D.12个答案 C5.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案166.(2017某某,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0807.(2017某某,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6608.(2015某某,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560教师专用题组考点计数原理、排列、组合1.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有( )A.60种B.70种C.75种D.150种答案 C2.(2014某某,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168答案 B3.(2014某某,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C4.(2014某某,8,5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.130答案 D5.(2014某某,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.24答案 D6.(2014某某,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种答案 B7.(2014某某,14,4分)在8X奖券中有一、二、三等奖各1X,其余5X无奖.将这8X奖券分配给4个人,每人2X,不同的获奖情况有种(用数字作答).答案608.(2014,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.答案369.(2018某某,23,10分)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2), f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).解析本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此, f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-22.因此,当n≥5时, f n(2)=n 2-n-22.疑难突破要做好本题,关键是理解“逆序”“逆序数”“f n(k)”的含义,不妨从比较小的1,2,3入手去理解这几个概念,这样就能得到f3(2). f4(2)是指1,2,3,4这4个数中逆序数为2的全部排列的个数,可以通过与f3(2), f3(1),f3(0)联系得到,4分别添加在f3(2)的排列中最后一个位置、f3(1)的排列中的倒数第2个位置、f3(0)的排列中的倒数第3个位置.有了上述的理解就能得到f n+1(2)与f n(2),f n(1), f n(0)的关系:f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n,从而得到f n(2)(n≥5)的表达式.【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届九师联盟9月质量检测,8)从1,3,5,7,9中任取两个数,从0,2,4,6,8中任取2个数,则组成没有重复数字的四位数的个数为( )A.2 100B.2 200C.2 160D.2 400答案 C2.(2020届某某某某一中第一次月考,8)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,那么不同的选法有( )A.50种B.60种C.70种D.90种答案 C3.(2020届某某某某七中第二次月考,4)7个人排成一排准备照一X合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A.480种B.720种C.960种D.1 200种答案 C4.(2020届某某洪湖二中月考,9)“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP.该款软件主要设有“阅读文章”“视听学习”两个学习版块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题版块.某人在学习过程中,“阅读文章”与“视听学习”两个学习版块之间最多间隔一个答题版块的学习方法有( )A.192种B.240种C.432种D.528种答案 C5.(2018全国百所名校冲刺卷(四),8)航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有( )A.34种B.48种C.96种D.144种答案 C6.(2019某某金卷先享题二,8)在高三下学期初,某校开展教师对学生的家庭学习问卷调查活动,已知现有3名教师对4名学生家庭进行问卷调查,若这3名教师每位至少到一名学生家中问卷调查,又这4名学生的家庭都能且只能得到一名教师的问卷调查,那么不同的问卷调查方案的种数为( )A.36B.72C.24D.48答案 A7.(2019某某某某一模)如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种答案 C8.(2018某某哈六中二模,9)从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A.48B.72C.90D.96答案 D9.(2019某某某某模拟,8)已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的.现用编号为1,2,3的三个仓库存放这6种化工产品,每个仓库放2种,那么安全存放的不同方法种数为( )A.12B.24C.36D.48答案 D二、多项选择题(共5分)10.(改编题)下列说法正确的是( )A.5个不同的球,放入8个不同的盒子中,每个盒子里至多放一个球,不同的放法有A85种B.5个不同的球,放入8个不同的盒子中,每个盒子放球数量不限,不同的放法有85种C.5个相同的球,放入8个不同的盒子中,每个盒子里至多放一个球,则不同的放法有C85种D.8个相同的小球,放入5个不同的盒子中,每盒不空的放法有C84种答案ABC三、填空题(每题5分,共15分)11.(2020届某某夏季高考模拟,13)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.答案3612.(2020届某某寿光现代中学10月月考,14)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间.每个车间至少分配一名员工,甲、乙两名员工必须分到同一个车间,则不同分法的种数为.答案3613.(2019某某某某中学第一次摸底考试,15)由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有个.答案12014.(2020届某某东阳中学10月月考,14)安排甲、乙、丙、丁、戊5名大学生去某某、某某、某某三个城市进行暑期社会实践,每个城市至少安排一人,则不同的安排方式共有种;其中学生甲被单独安排去某某的概率是.答案150;775。
第十章 计数原理 10.1 分类加法计数原理与分布乘法计数原理 理分类加法计数原理与分步乘法计数原理【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( × ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ )(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.( √ )(4)如果完成一件事情有n 个不同步骤,在每一步中都有若干种不同的方法m i (i =1,2,3,…,n ),那么完成这件事共有m 1m 2m 3…m n 种方法.( √ )(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( √ )1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 答案 B解析 由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252.故选B.2.(教材改编)已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( )A.12 B.8 C.6 D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13 C.12 D.10答案 B解析当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18 C.12 D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理,知共有12+6=18(个)奇数.5.(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种.答案32解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,知总的报名方法共2×2×2×2×2=32(种).题型一分类加法计数原理的应用例1 高三一班有学生50人,其中男生30人,女生20人;高三二班有学生60人,其中男生30人,女生30人;高三三班有学生55人,其中男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法.根据分类加法计数原理,任选一名学生任学生会主席共有50+60+55=165(种)不同的选法.(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.根据分类加法计数原理,共有30+30+20=80(种)不同的选法.思维升华分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.(2016·全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个 B.16个 C.14个 D.12个答案 C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).题型二分步乘法计数原理的应用例2 (1)(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18 C.12 D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案(1)B (2)120解析(1)从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×3=18(种),故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.(2)(2017·石家庄质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.答案(1)100 (2)4554解析(1)可分三步给百、十、个位放数字,第一步:百位数写有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数个数为5×5×4=100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.题型三两个计数原理的综合应用例3 (1)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.答案(1)260 (2)36解析(1)区域A有5处涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260(种)涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面均成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.(2017·济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.答案96解析按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24(种)方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72(种)方法.故由分类加法计数原理,不同的涂色种数为24+72=96.13.利用两个基本原理解决计数问题典例(1)把3封信投到4个信箱,所有可能的投法共有( )A.24种 B.4种 C.43种 D.34种(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4次,轮船有3次,问此人的走法可有________种.错解展示解析(1)因为每个信箱有三种投信方法,共4个信箱,所以共有3×3×3×3=34(种)投法.(2)乘火车有4种方法,坐轮船有3种方法,共有3×4=12(种)方法.答案(1)D (2)12现场纠错解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有4+3=7(种).答案(1)C (2)7纠错心得(1)应用计数原理解题首先要搞清是分类还是分步.(2)把握完成一件事情的标准,如典例(1)没有考虑每封信只能投在一个信箱中,导致错误.1.(2016·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有( )A.8种B.9种C.10种D.11种答案 B解析设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法.2.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,则不同的摆法有( )A.4种 B.5种 C.6种 D.9种答案 B解析记反面为1,正面为2,则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112三种,共5种摆法,故选B.3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,则不同的安排方案共有( )A.12种B.10种C.9种D.8种答案 A解析第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,有C24=6(种)选派方法.由分步乘法计数原理,不同的选派方案共有2×6=12(种).4.(2015·四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个 B.120个 C.96个 D.72个答案 B解析由题意知,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40 000大的偶数共有72+48=120(个).故选B.5.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有( )A.1种B.3种C.6种D.9种答案 C解析因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色.故有3×2×1=6(种)涂色方案.6.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种B.18种C.24种D.36种答案 A解析先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·2·1=12(种)不同的排列方法.7.(2016·大连模拟)将数字1,2,3,4填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有________种.答案9解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法.于是由分类加法计数原理,得共有3+3+3=9(种)不同的填法.8.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B 之间线路不通,则焊接点脱落的不同情况有________种.答案13解析四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共3种可能.故不通的情况有24-3=13(种)可能.9.(2017·日照调研)从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为________.答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93,综上可知,共有20+1-4=17(个)不同的对数值.10.(2016·天津模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.答案(1)90 (2)9×10n解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n 种填法.11.有一项活动需在3名老师,6名男同学和8名女同学中选人参加.(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师,男同学,女同学各一人参加,有多少种不同选法?解(1)只需一人参加,可按老师,男同学,女同学分三类各自有3,6,8种方法,总方法数为3+6+8=17.(2)分两步,先选教师共3种选法,再选学生共6+8=14(种)选法,由分步乘法计数原理知,总方法数为3×14=42.(3)教师,男同学,女同学各一人可分三步,每步方法依次为3,6,8种.由分步乘法计数原理知总方法数为3×6×8=144(种).12.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解方法一设染色按S-A-B-C-D的顺序进行,对S,A,B染色,有5×4×3=60(种)染色方法.由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:C与A同色时(此时C对颜色的选取方法唯一),D应与A(C),S不同色,有3种选择;C与A 不同色时,C有2种可选择的颜色,D也有2种颜色可供选择.从而对C、D染色有1×3+2×2=7(种)染色方法.由分步乘法计数原理,不同的染色方法种数为60×7=420.方法二根据所用颜色种数分类,可分三类.第一类:用3种颜色,此时A与C,B与D分别同色,问题相当于从5种颜色中选3种涂三个点,共A35=60(种)涂法;第二类:用4种颜色,此时A与C,B与D中有且只有一组同色,涂法种数为2A45=240(种);第三类:用5种颜色,涂法种数共A55=120(种).综上可知,满足题意的染色方法种数为60+240+120=420.*13.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?其中偶函数有多少个?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解(1)a的取值有5种情况,b的取值6种情况,c的取值有6种情况,因此y=ax2+bx+c 可以表示5×6×6=180(个)不同的二次函数.若二次函数为偶函数,则b=0,故有5×6=30(个).(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.。