余数问题练习110
- 格式:pdf
- 大小:117.60 KB
- 文档页数:2
数论问题之余数问题:余数问题练习题含答案1.数11 1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007 6后余3,所以答案为7.2.求下列各式的余数:(1)2461 135 6047 11 (2)2123 6分析:(1)5;(2)6443 19=339 2,212=4096 ,4096 19余11 ,所以余数是11 .3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7 11 13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.6.求下列各式的余数:(1)2461 135 6047 11(2)2123 6分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4 ):2 ,4 ,2 ,4 ,2 ,4因为要求的是2的123次方是奇数,所以被6除的余数是2.7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .8.(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2 2 3 717=51 28=68 21=84 17,因此所求的两位数51或68或84.9.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.第二页:练习题含答案11 20题第三页:练习题含答案21 28题11.除以99,余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.12.求下列各式的余数:(1)2461 135 6047 11(2)19992000 7分析:(1)5;(2)1999 7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000 3 余2 可以得到42000除以7 的余数是2,故19992000 7的余数是2 .13.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .14.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.15.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.16.除以99的余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.17.19941994 1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994 15余14,19941994 15余4,199419941994 15余9,1994199419941994 15余14,......,发现余数3个一循环,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400 0能被15整除,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4.18.a b c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c) (a-b) (b-c)除以11的余数是多少分析:(a+b+c) 11的余数是7;(a b) 11的余数是1l+2 7=6;(b c) 11的余数是11+7 9=9.所求余数与7 6 9 11的余数相同,是4.19.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.20.自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c 不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.21.求123456789101112 199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+ ..9=45二位数数字之和是1 10+1+2+3+ .9 (10-19)2 10+1+2+3+ .9 (20-29)9 10+1+2+3+ .9 (90-99) 余90,9余0,11余2故二位数总和为(1+2 ..+9) 10+1+2 ..+9=495100 199与1 99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3. 22: 222 22除以13所得的余数是_____.2000个分析与解答:因为222222=2111111 =21111001=211171113所以222222能被13整除. 又因为2000=6333+2 222 2=222 200+22 2000个19982213=1 9所以要求的余数是9.求除以9,11,99,101,999,1001,13和91的余数分别是多少;解答:23: 除以9的余数是0,11: 一个2007奇数位上数字和与偶数位上数字的和的差为5. 2007个2007奇数位上数字和与偶数位上数字的和的差为5 2007.5 2007 3(mod11),所以除以11的余数是399: 能被9整除,被11除余3的数最小是36,所以除以99余36200720072007能被7,13,37整除.999=27 37 1001=7 11 13 91=7 1313: 0(mod13) 除以13余091: 0(mod91) 除以91余0所以除以13,91,999的余数都是0.1001: 除以11余3,除以7,13余0,满足次条件的最小数是1092,1092除以1001余91.所以除以1001的余数是91.101: 我们发现9999=101 99,所以=0000+2007= 10000+2007= 9999++2007 +2007(mod101)同样道理+2007 +2007 2(mod101)以此类推2007 2007(mod101)=6824、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何解答:此数除以3余2,除以5余3,除以7余2,满足条件最小数是2325、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;解答:满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)26、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出7的余数就可以知道天后是星期几. 52007(mod7),56 1(mod7)2007 3(mod6), 52007 53 6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是127、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194628、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A的倍数;同理乙-2丙也同样没有余数,是A的倍数.939 2-603=1275,939-393 2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51再实验得到A为17,余数分别为8,4,2.。
余数问题例1:被除数、除数、商和余数之和是2143,已知商事33,余数是52,求被除数和除数。
拓展1:有一个自然数,用它去除63、91、129得到3个余数和是25,这个自然数是多少?例2:一个自然数除以3余1,除以5余3,加上2就能被7整除,这个自然数最小是多少?拓展2:在1~200这200个自然数中,被3除或被7除都余2的数有多少个?例3:自然数a除以7余3,自然数b除以7余4,a加b的和除以7余几?拓展3:自然数a除以7余3,自然数b除以7余3,已知a 大于b,那么a减b的差除以7,余数是多少?例4:有一个整数,除300、262、205得到的余数相同,这个数是多少?例5:整数11111----111(2004个1)被6除余数是几?1、2100除以一个两位数得到的余数是56,那么这个两位数是()。
2、在整数除法里,余数比除数小,那么从4到50的各整数除以4,余数是2的整数有()个。
3、一个数被2除余1,被3除余2,被4除余3,被5除余4,这个数至少是()。
4、清照小学鼓号队同学在操场上列队,已知人数在90~110人之间,排成3列没有剩余,排成5列不足2人,排成7列不足4人,共用()人参加列队。
5、一个四位数2a75除以11后所得余数是1,那么a=()。
6、用一个整数去除312、231、123、得到的3个余数之和是41,这个数是()。
7、在1~400整数中,被3、5、7除都余2的数有()个。
8、100个7组成一个一百位数,被13除后余数是(),商的各位数字之和是()。
9、71427和19的积被7除余()。
10、小刚在一次计算除法时,把被除数171错写成117,结果商少了3,而余数恰好相同,原题中的除数是()。
11、69、90、125被某个自然数除时,余数相同,这个自然数最大是()。
12、1991和1769除以某一个自然数n,余数分别是2和1,那么n最小是()。
13、一个十几岁的男孩,把自己的岁数写在父亲之后,组成一个四位数,从这个四位数中减去他们父子两人岁数的差得4289,男孩()岁,父亲()岁。
巧用余数1.□÷7=3……□,根据余数写出被除数最大是多少?最小是多少?2.幼儿园老师拿出17个笑脸贴画奖励给小朋友,每个人奖励2个,还余1个,老师奖给了几个小朋友?3.下面各题中被除数最小填几?最大填几?(1÷6=8……(29=5……÷6=8……9=5……4.在()里填上合适的数。
(至少写3种)()÷()=5......2 ()÷()=6 (5)_________________________ __________________________________________________ __________________________________________________ _________________________5.有27个苹果,最少要拿走几个,就使得6个小朋友能分得一样多?每个小朋友能分到几个?6.小王带5个小朋友种33棵树,平均每个人种多少棵?小王要多种几棵,才能完成任务?7.学校把一批故事书平均分给二年级的6个班,平均每班分得9本,还剩3本,这批故事书有多少本?8.有一些糖不到30块,平均分给3个孩子或者8个孩子都剩下1块,想一想,有多少块糖?9.小朋友们在玩画片,依次按照下面的规律摆下去,你知道第23个应该摆什么画片吗?第32个摆什么?…………10.2005年的元旦是星期六,再过60天是星期几?11.根据下图中的排列规律,算一算第27个物体应该是什么?(1)☆△□☆△□☆△□……(2)※⊙○★※⊙○★……12.有30个彩球,依次按红、黄、蓝、绿的顺序挂在路旁,请问,最后一个彩球是什么颜色的?13.同学们在操场上参加阳光体育活动,按3男3女的顺序排队,请问排到第28个同学是男生还是女生?第48个同学呢?14.今年的5月1日是星期三,再过34天是星期几?15.3月6日是星期四,4月3日是星期几?16.今天是星期五,从今天起,到第56天是星期几?专题一巧用余数【智慧锦囊】星期天,妈妈给王东讲了这样的一个故事:“从前有座山,山里有座庙,庙里的老和尚给小和尚讲故事,从前有座山,山里有座庙……”小明听了很不耐烦了,妈妈说:“生活中有许多这样的周期问题,有一些事物总是按照一定的规律不断重复出现,比如一年四季周而复始;白天黑夜不断轮回……这些都属于周期问题的范畴。
小学奥数同余定理单选题100道及答案1. 下列算式中,余数相同的是()A. 24÷5 35÷6B. 39÷5 27÷4C. 48÷7 45÷6答案:B解析:39÷5 = 7......4,27÷4 = 6......3,余数都是4。
2. 一个数除以8 余5,除以9 余6,这个数最小是()A. 69B. 72C. 77答案:C解析:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数是72 - 3 = 69。
3. 11÷4 = 2......3,如果被除数和除数都扩大10 倍,那么余数是()A. 3B. 30C. 0.3答案:B解析:被除数和除数都扩大10 倍,商不变,余数扩大10 倍,3×10 = 30。
4. 有一个数,除以5 余数是2,除以7 余数是3,这个数最小是()A. 22B. 23C. 27答案:B解析:通过列举,可得23 除以5 余数是2,除以7 余数是3。
5. 47 除以一个数,余数是7,这个数最小是()A. 8B. 9C. 10答案:B解析:除数要大于余数,所以这个数最小是9。
6. 一个数除以6 余4,除以8 余6,这个数最小是()A. 22B. 20C. 26答案:A解析:这个数加上2 就能被 6 和8 整除,6 和8 的最小公倍数是24,所以这个数是24 - 2 = 22。
7. 35÷()= 4......3,括号里应填()A. 8B. 7C. 9答案:A解析:(35 - 3)÷4 = 8。
8. 下列算式中,余数最大的是()A. 38÷5B. 47÷8C. 59÷9答案:C解析:38÷5 = 7......3,47÷8 = 5......7,59÷9 = 6......5,5 < 7 < 9。
小学数学有余数问题的题目100道1. 23除以5,余数是多少2. 19除以3,余数是多少?3. 41除以6,余数是多少?4. 35除以7,余数是多少?5. 56除以8,余数是多少?6. 28除以4,余数是多少?7. 37除以9,余数是多少?8. 16除以2,余数是多少?9. 53除以5,余数是多少?10. 22除以3,余数是多少?11. 47除以7,余数是多少?12. 32除以6,余数是多少?13. 59除以8,余数是多少?14. 25除以4,余数是多少?15. 34除以9,余数是多少?16. 17除以2,余数是多少?17. 61除以5,余数是多少?18. 29除以3,余数是多少?19. 44除以7,余数是多少?20. 38除以6,余数是多少?22. 26除以4,余数是多少?23. 31除以8,余数是多少?24. 15除以2,余数是多少?25. 63除以5,余数是多少?26. 35除以3,余数是多少?27. 49除以7,余数是多少?28. 42除以6,余数是多少?29. 55除以9,余数是多少?30. 27除以4,余数是多少?31. 39除以8,余数是多少?32. 18除以2,余数是多少?33. 67除以5,余数是多少?34. 37除以3,余数是多少?35. 46除以7,余数是多少?36. 33除以6,余数是多少?37. 58除以9,余数是多少?38. 24除以4,余数是多少?39. 40除以8,余数是多少?40. 19除以2,余数是多少?41. 69除以5,余数是多少?42. 32除以3,余数是多少?44. 36除以6,余数是多少?45. 53除以9,余数是多少?46. 一根绳子长23米,要剪成每段长4米的小段,最多可以剪成多少段,还剩多少米?47. 一盒巧克力有25块,小明每天吃3块,吃了8天后还剩下多少块巧克力?48. 小红有32个苹果,她每天吃5个,吃了6天后,还剩下多少个苹果?49. 一个果园里有47棵苹果树,每棵树上平均有18个苹果,如果摘掉8个坏苹果,最后还剩多少个苹果?50. 小华读一本200页的书,他每天读15页,读了12天后,还剩下多少页没有读?51. 丽丽有50张邮票,她给朋友送了8张后,还剩下多少张邮票?52. 一块布长60厘米,要裁成每段长8厘米的小段,最多可以裁成多少段,还剩多少厘米?53. 一袋糖有100颗,小明每天吃6颗,吃了15天后,还剩下多少颗糖?54. 小刚买了36支铅笔,他每天用4支,用了9天后,还剩下多少支铅笔?55. 小红从图书馆借了45本书,她每天读7本,读了6天后,还剩下多少本书没有读?56. 一个班级有50名学生,每5人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?57. 小华买了28个苹果,她每天吃4个,吃了7天后,还剩下多少个苹果?58. 小明买了30支水彩笔,他每天用5支,用了6天后,还剩下多少支水彩笔?59. 丽丽买了42块巧克力,她每天吃6块,吃了7天后,还剩下多少块巧克力?60. 一盒饼干有35块,小明每天吃4块,吃了8天后,还剩下多少块饼干?61. 小华有60张邮票,她给朋友送了10张后,还剩下多少张邮票?62. 一根绳子长36米,要剪成每段长9米的小段,最多可以剪成多少段,还剩多少米?63. 一个班级有48名学生,每6人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?64. 小刚买了24个玩具,他每天玩3个,玩了8天后,还剩下多少个玩具?65. 小红从图书馆借了60本书,她每天读8本,读了7天后,还剩下多少本书没有读?66. 小明买了50支铅笔,他每天用7支,用了7天后,还剩下多少支铅笔?67. 一盒糖果有42颗,小明每天吃5颗,吃了8天后,还剩下多少颗糖果?68. 丽丽买了21块巧克力,她每天吃3块,吃了6天后,还剩下多少块巧克力?69. 小华有30张邮票,她给朋友送了5张后,还剩下多少张邮票?70. 一根绳子长45米,要剪成每段长6米的小段,最多可以剪成多少段,还剩多少米?71. 一个班级有54名学生,每9人组成一个小组进行活动,最后会剩下多少名学生没有参加小组?72. 小刚买了40个玩具,他每天玩4个,玩了10天后,还剩下多少个玩具?73. 小红从图书馆借了72本书,她每天读9本,读了8天后,还剩下多少本书没有读?74. 小明买了63支铅笔,他每天用9支,用了7天后,还剩下多少支铅笔?75. 一盒糖果有70颗,小明每天吃8颗,吃了8天后,还剩下多少颗糖果?76. 丽丽买了35块巧克力,她每天吃5块,吃了7天后,还剩下多少块巧克力?77. 小红买了123颗糖果,平均分给9个小朋友后,还剩下几颗糖果?78. 爸爸买了256个苹果,如果每盘放6个,最多可以放满多少盘,还剩下几个?79. 三年级一班有43名学生,每6人组成一个小组进行活动,最多可以组成几个完整的小组,还剩下几人?80. 一本故事书有285页,小明每天看9页,看了30天后,还剩下多少页没有看?81. 小华的妈妈买了367个鸡蛋,每盘只能放10个,她需要准备多少个盘子才能放下所有的鸡蛋?82. 一条长239米的绳子,每段剪成8米长,最多可以剪成多少段,还剩下多少米?83. 学校图书馆有450本图书,每个班级借走7本,最后还剩下多少本图书?84. 小红有302张邮票,她想把它们平均分给5个好朋友,每个朋友最多能得到多少张邮票,还剩下多少张?85. 商店里有263支铅笔,每盒装12支,最多可以装满多少盒,还剩下几支?86. 丽丽买了496块巧克力,她每天吃8块,吃了60天后,还剩下多少块巧克力?87. 三年级二班有52名学生,每4人组成一个小组进行课外活动,最多可以组成多少个小组,还剩下几人?88. 小明有278张卡片,他打算每10张放进一个信封里,他需要准备多少个信封才能装下所有的卡片?89. 一根绳子长345米,每段剪成6米长,最多可以剪成多少段,还剩下多少米?90. 学校食堂买了196斤大米,每天吃9斤,吃了20天后,还剩下多少斤大米?91. 商店里有175瓶果汁,每箱装8瓶,最多可以装满多少箱,还剩下几瓶?92. 丽丽买了283颗糖果,她每天吃9颗,吃了30天后,还剩下多少颗糖果?93. 小红有421张邮票,她想把它们平均分给7个好朋友,每个朋友最多能得到多少张邮票,还剩下多少张?94. 商店里有312支铅笔,每盒装9支,最多可以装满多少盒,还剩下几支?95. 小华的妈妈买了157个鸡蛋,每盘只能放5个,她需要准备多少个盘子才能放下所有的鸡蛋?96. 一条长408米的绳子,每段剪成7米长,最多可以剪成多少段,还剩下多少米?97. 学校图书馆有369本图书,每个班级借走6本,最后还剩下多少本图书?98. 小红买了574颗糖果,平均分给8个小朋友后,还剩下几颗糖果?99. 爸爸买了179个苹果,如果每盘放4个,最多可以放满多少盘,还剩下几个?100. 三年级一班有38名学生,每5人组成一个小组进行活动,最多可以组成几个完整的小组,还剩下几人?。
余数问题例1 一个两位数除310,余数是37。
求这样的两位数随堂练习1 已知一个两位数除1477,余数是49.那么满足那样条件的所有两位数是▁▁▁▁。
例2 有一个整数,用它去除70、110、160所得到的3个余数和是50.这个整数是多少?随堂练习2 两个整数相除商8,余16,并且被除数、除数、商及余数和是463.那么被除数是▁▁▁例3 一个自然数除以3,得余数2,用所得的商除以4,得余数3,若用这个自然数除以6,得余数▁▁▁随堂练习3 有三个自然数ABC,已知B除以A,得商3余3;C除以A,得商9余11,那么C除以B,得到的余数是▁▁▁例4 有一张纸剪成6块,从所得纸片中取出若干块,每块各剪成6块,在从所得纸片中取出若干块,每块各剪成6块……如此进行下去,到剪完某一次后停止。
所得纸总数有可能是2012,2013,2014,2015,2016这几个数中的▁▁▁随堂练习4 桌面上原有硬纸片5张。
从中取出若干张来,并将每张都任意剪成7张较小的纸片,然后放回桌面,像这样,取出,剪小,放回,再取出,剪小,放回……是否可能在某次放回后,桌面上的纸片刚好是2015?例5 商店里有六箱货物,分别重15 16 18 19 20 31千克,两个顾客买了其中五箱。
已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是▁▁▁千克随堂练习5 有六张卡片,每张卡片分别标有1193 1258 1842 1866 1912 2494这六个数,甲取3张,乙取2张,丙取1张,结果发现甲乙各自手中卡片上数之和,一个是另一个的2倍,那么丙手中卡片上的数是?例6 有一列数:1 3 9 25 69 189 517……,其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么这列数中的第2014个数除以6,得到的余数是?随堂练习6 1除以44的商,从小数点有点开始的第1位到第100位的各个数位的数字相加的和是?练习题1 写出全部除109后余数为4的两位数?2 任意写一个两位数,再将它重复3遍成一个8位数,将这个8位数除以这个两位数所得到的商再除以9.问得到的余数是多少?3. 5122除以1个两位数得到的余数是66.求这个两位数?4. 甲乙两数和是1088,甲数除以乙数商11余32,求甲乙两数5.桌子上放着6包糖,分别装有3 4 5 7 9 13块糖,小华拿走了2包,已知小明拿走的糖块数是小华的2倍,那么剩下的那包糖中,糖有多少块?6.前2014个既能被2整除有能被3整除的正整数的和,除以9的余数是多少?7.小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数没变,那么这道题除数是多少?。
三年级数学下册除法练习题有余数的减法
本文档提供了三年级数学下册除法练题,重点是有余数的减法。
这些练题旨在帮助学生巩固除法运算的基本知识,并且训练他们在
计算过程中处理余数的能力。
练题1
问题:有一桶里装有17个鸡蛋,要将这些鸡蛋平均分给3个
小朋友,每个小朋友能得到多少个鸡蛋?还剩下几个鸡蛋?
答案:每个小朋友能得到5个鸡蛋,还剩下2个鸡蛋。
练题2
问题:一只蜘蛛每天早上从蛛网上下来,它每次都会吃掉6只
苍蝇。
如果一共有25只苍蝇,蜘蛛能吃几天?
答案:蜘蛛能吃4天,还剩下1只苍蝇。
练题3
问题:一桶苹果里有36个苹果,小明想将它们平均分给6个
小朋友,每个小朋友能得到多少个苹果?还剩下几个苹果?
答案:每个小朋友能得到6个苹果,没有剩下苹果。
练题4
问题:一共有31个蜜蜂,要将它们平均分成4组,每组有多少只蜜蜂?还剩下几只蜜蜂?
答案:每组有7只蜜蜂,还剩下3只蜜蜂。
这里提供了四道有余数的减法练题,通过反复练这些题目,学生将会更加熟悉并掌握除法运算过程中余数的处理方法。
同时,练题的设置也能够培养学生的逻辑思维能力和解决问题的能力。
祝愿学生们在本练习中取得进步!。
简单的余数问题月日姓名【典型例题】1.已知被除数与除数的和是118,商是13,余数是6,求被除数与除数。
2.(1)求18×26×3除以17的余数。
(2)求(3478+296+1842)除以7的余数。
3.一个自然数N被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,求N的最小值。
4.一个自然数N被10除余1,被9除余1,被8除余1,求N 的最小值。
随堂小测姓名成绩1.两数整数相除商是25,余数是8.被除数、除数、商和余数的和是327,问除数是多少?2.(1)求478×296×351除以17的余数。
(2)求(321+189+21)除以7的余数。
3.阿莲有一些糖果,平均分给2个小朋友,3个小朋友,4个小朋友,5个小朋友,6个小朋友或者七个小朋友刚好都多一块糖,问阿莲至少有多少糖果?4.一个盒子里有不多于200个的棋子,如果每次2个,或者每次3个,或者每次4个,或者每次6个的取,最终盒内都剩下一个棋子;如果每次11个的取,那么正好取完,求盒子里共有多少个棋子?课后作业姓名成绩1.甲数除以13余7,乙数除以13余9,现将甲、乙两数相加,问和除以13的余数是多少?2.甲数除以13余7,乙数除以13余9,现将甲、乙两数相乘,问乘积除以13的余数是多少?3.两个数的和是357,用较大的数除以较小的数商5余15.求这两个数。
4.六(1)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。
问上体育课的同学至少多少人?【遗产风波】有一个富翁的妻子怀孕了,突然他得了疾病,快不行了,于是写下遗言对所有财产进行了分配:如果妻子生的是儿子,妻子分三分之一,儿子分三分之二;如生女儿,妻子分三分之二,女儿分三分之一。
结果,他死后,他妻子生了一对龙凤胎。
请问聪明的小朋友?富翁的财产如何分配?【课外故事】陈景润的故事陈景润成了国际知名的大数学家,深受人们的敬重。
有余数的问题(已)有余数的问题(已)一、生活知识1、()÷5=3......4 ()÷7=6 (1)经验总结:被除数=商×除数+余数余数必须比除数小2、如果去掉第一题中的余数,被除数是多少?3、a÷6=3......4 b÷6=8 (5)(b-a)÷6的余数是多少?(b+a)÷6的余数是多少?(b×a)÷6的余数是多少?二、新知识(一)基本类型(二)七十二变第一类型:关于“被除数=商×除数+余数”的余数问题第一分类:关于“除法”的余数问题1、被除数、除数、商与余数之和是1173,已知余数是9,商是16,求被除数和除数?第二分类:关于“减法”的余数问题1、如果被减数、减数与差三个数的和是36,那么被减数为()第二类型:关于“余数之和”的余数问题1、189 97 118分别被同一个数去除,都不能整除,三个余数之和是9,求这个自然数是多少?第三类型:关于“同余”的余数问题1、一个自然数除326 258 207所得余数相同,这个自然数是多少?(17)第四类型:关于“和、差、积”的余数问题第一分类:关于“和”的和、差、积1、自然数a除以17余5,自然数b除以17余13,a>b,a与b的和除以17的余数是多少?第二分类:关于“差”的和、差、积A类:关于“能减过”的差1、自然数a除以16余14,自然数b除以16余11,并且a>b,a与b的差除以16的余数是多少?B类:关于“不能减过”的差1、自然数a除以26余8,自然数b除以26余9,并且a>b ,a与b的差除以26的余数是多少?第三分类:关于“积”的和、差、积A类:关于“简单”的积1、33×45×76的积除以13的余数是多少?B类:关于“复杂”的积1、3232+6464+8888被4除的余数是多少?第五类型:关于“周期”的余数问题1、111…11(2006)÷7的余数是多少?第六类型:关于“翻译与判断”的同余第一分类:关于“少同样数”的翻译与判断1、一盒棋子,4个4数,多3个;6个6数,多5个;15个15数,多14个,这盒棋子在150—200之间,共有多少个?第二分类:关于“判断”的翻译与判断1、一个圆圈上有若干个孔(不到100个),小明像玩跳棋一样,从a出发,逆时针方向,每隔几个孔跳一步,希望一周后能回到a。
余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都能够推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
好好学习,天天向上
幸福像花儿一样,学习像溪水一般余数问题练习19
1、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何
2、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那幺最大可能是________;
解答:1、此数除以3余2,除以5余3,除以7余2,满足条件最小数是23
2、满足除以7余3,除以11余7的最小数为73,设此数为
73+77a=13b+4,69-a=13b.
a最小等于4.满足条件的最小数是381.
设最大的四位数为381+1001x,最大的四位数为9390.(1732)
3、今天周一,天之后是星期________;这个数的个位数字是________;
天之后是星期________;
解答:只要求出÷7的余数就可以知道天后是星期
几.≡52007(mod7),56≡1(mod7)。