人教版七年级数学上册各章知识点总结
- 格式:ppt
- 大小:748.00 KB
- 文档页数:38
人教版版七年级数学上册知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
七年级数学上册知识点第一章有理数正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
有理数的加减法。
有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
人教版初中七年级上数学知识点总结七年级数学(上)知识点人教版七年级数学上册包含了有理数、整式的加减、一元一次方程和图形的认识初步四个章节的内容。
第一章有理数一、知识框架二、知识概念1.有理数:凡能写成 p/q(p、q为整数且p≠0)形式的数,都是有理数。
正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
需要注意的是:0既不是正数也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。
有理数的分类:①有理数。
0②有理数 = 0③有理数 < 02.数轴:数轴是一条直线,规定了原点、正方向和单位长度。
3.相反数:只有符号不同的两个数,其中一个是另一个的相反数;0的相反数还是0;相反数的和为0,即 a+b=0,a、b互为相反数。
4.绝对值:正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
需要注意的是,绝对值的意义是数轴上表示某数的点离开原点的距离。
绝对值可表示为:a|=a(a≥0)a|=-a(a<0)5.有理数比大小:1)正数的绝对值越大,这个数越大。
2)正数永远比负数大,负数永远比正数小。
3)正数大于一切负数。
4)两个负数比大小,绝对值大的反而小。
5)数轴上的两个数,右边的数总比左边的数大。
6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数。
需要注意的是,0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
7.有理数加法法则:1)同号两数相加,取相同的符号,并把绝对值相加。
2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:1)加法的交换律:a+b=b+a。
2)加法的结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数,即a-b=a+(-b)。
10.有理数乘法法则:1)两数相乘,同号为正,异号为负,并把绝对值相乘。
第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
新人教版七年级数学上册重要知识点汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
〔根据需要,有时在正数前面也加上“+”〕②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2 有理数1、有理数〔1〕整数:正整数、0、负整数统称整数;〔2〕分数;正分数和负分数统称分数;〔3〕有理数:整数和分数统称有理数。
2、数轴〔1〕定义:通常用一条直线上的点表示数,这条直线叫数轴;〔2〕数轴三要素:原点、正方向、单位长度;〔3〕原点:在直线上任取一个点表示数0,这个点叫做原点;〔4〕数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
〔例:2的相反数是-2;0的相反数是0〕〔2〕一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法。
1.4 有理数的乘除法①有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方1、求n个一样因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法那么:先乘方,再乘除,最后加减;同级运算,从左到右进展;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a⑵打满14场比赛最高能得17+〔14-8〕×3=35分.⑶由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定能到达预期目的. 而胜了3场,平3场,正好到达预期目的. 所以在以后的比赛中,这个球队至少要胜3场.例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母如今就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开场存入的本金较少?[教育储蓄〔整存整取〕年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]解析:理解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开场存入x元. 然后分别计算两种方案哪种开场存入的本金较少.⑴2年后,本息和为x〔1+2. 70%×2〕=1. 054x;再存3年后,本息和要到达6000元,那么1. 054x〔1+3. 24%×3〕=6000.解得x≈5188.⑵按第二种方案,可得方程x〔1+3. 60%×5〕=6000.解得x≈5085.所以,按他们讨论的第二种方案,开场存入的本金比拟少.例11. 扬子江药业集团消费的某种药品包装盒的侧面展开图如下图. 假如长方体盒子的长比宽多,求这种药品包装盒的体积.分析^p :从展开图上的数据可以看出,展开图中两高与两宽和为350px,所以一个宽与一个高的和为175px,假如设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,因为长比宽多100px,所以长为〔x+4〕cm,根据展开图可知一个长与两个高的和为325px,由此可列出方程.解:设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,长为〔x+4〕cm.根据题意,得〔x+4〕+2〔7-x〕=13,解得x=5,所以7-x=2,x+4=9.故长为225px,宽为125px,高为50px.所以这种药品包装盒的体积为:9×5×2=90〔cm3〕.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得〔1+x〕〔1-5%〕=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:此题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进展求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
第一章有理数1. 正数和负数•正数:大于0的数。
•负数:在正数前面加上符号“-”的数。
•0的意义:不仅表示没有,还可以表示某种量的基准。
•相反意义的量:用正数和负数表示具有相反意义的量,如收入与支出、前进与后退等。
2. 有理数的分类•整数:正整数、0、负整数。
•分数:正分数、负分数。
•有理数:整数和分数的统称。
3. 数轴•定义:规定了原点、正方向和单位长度的直线。
•点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。
4. 相反数•定义:只有符号不同的两个数。
•性质:任何一个数都有相反数,且只有一个;正数的相反数是负数,负数的相反数是正数;0的相反数是0。
5. 绝对值•定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。
•性质:绝对值表示数轴上某点到原点的距离。
6. 有理数的大小比较•利用数轴:数轴上右边的数大于左边的数。
•利用法则:同为正数或负数时,绝对值大的数分别更大或更小;正数大于0,负数小于0。
7. 有理数的运算•加法:同号相加取同号,异号相加取绝对值较大数的符号并相减。
•减法:减去一个数等于加上这个数的相反数。
•乘法:同号得正,异号得负,并把绝对值相乘。
•除法:除以一个数等于乘以这个数的倒数。
•乘方:求几个相同因数的积的运算。
第二章整式的加减1. 用字母表示数•代数式:用字母和数通过有限次的加、减、乘、乘方运算得到的式子。
•单项式:数与字母的乘积组成的式子。
•多项式:几个单项式的和。
2. 整式的加减•去括号:括号前是正数,去括号后各项符号不变;括号前是负数,去括号后各项符号改变。
•合并同类项:把多项式中的同类项合并成一项。
第三章一元一次方程1. 定义•一元一次方程:只含有一个未知数,且未知数的次数是1的整式方程。
2. 标准形式•ax+b=0(其中a、b是已知数,且a≠0)。
3. 解法步骤•整理方程•去分母(如果有的话)•去括号•移项•合并同类项•系数化为1•检验解的正确性第四章图形的初步认识1. 直线、射线、线段•直线:没有端点,无限长,不可度量。
第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。
性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。
性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。
倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。
6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3) 对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。
即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.二、有理数的运算1、运算法则:(1)有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③ 一个数同0相加,仍得这个数。