!函数的对称性与周期性
- 格式:doc
- 大小:773.01 KB
- 文档页数:12
第5炼 函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
函数对称性与周期性关系【知识梳理】一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。
函数的周期性与对称性函数是数学中的重要概念之一,它描述了数值之间的对应关系。
在函数的研究中,周期性与对称性是两个重要的性质。
本文将从理论和实际应用的角度,探讨函数的周期性与对称性。
一、周期性函数的周期性是指在一定的范围内,函数的值以一定的规律重复出现。
如果存在一个正数T,对于函数f(x)的定义域内的任意x,有f(x+T) = f(x),则称函数f(x)具有周期T,T是函数的周期。
周期性在数学中广泛应用于波动现象的研究中,如正弦函数和余弦函数就是典型的周期性函数。
以正弦函数为例,函数f(x) = sin(x)的周期为2π,即在每一个2π的区间内,函数的值重复出现。
这种周期性的特征在物理学中非常重要,可以用于描述电磁波、声波等的传播规律。
在实际应用中,周期性函数经常用于天文学、物理学、电路分析等领域。
例如,利用函数的周期性可以预测天体运动的规律,分析电子元件的交流电路,优化信号处理等。
二、对称性函数的对称性是指在某种变换下,函数的值保持不变。
常见的对称性有奇偶对称性和轴对称性。
1. 奇偶对称性函数f(x)具有奇对称性,如果对于定义域内的任意x,有f(-x) = -f(x)。
奇对称函数在坐标系中以原点为对称中心,左右两侧关于y轴对称。
以奇对称函数f(x) = sin(x)为例,可以观察到f(x)关于原点对称。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在负半轴上取负值。
函数的奇对称性在数学和工程中都具有广泛应用。
例如在电力系统中,交流电流的正弦波形就是一种典型的奇对称函数。
2. 轴对称性函数f(x)具有轴对称性,如果对于定义域内的任意x,有f(-x) = f(x)。
轴对称函数关于y轴对称,即函数图像关于y轴对称。
以轴对称函数f(x) = x^2为例,可以观察到函数图像在y轴上是对称的。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在正半轴上同样取正值。
轴对称函数在几何学和图像处理中有广泛应用。
第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。
函数对称性与周期性关系的理解引言在数学中,函数对称性与周期性是两个重要的概念。
函数的对称性描述了函数在特定条件下的变化规律,而周期性则指的是函数具有重复出现的特性。
本文将探讨函数对称性与周期性的概念及其在数学中的应用。
函数对称性函数对称性是指函数在某种操作下保持不变的特性。
常见的函数对称性有轴对称、中心对称和原点对称等。
轴对称轴对称是指函数关于某个直线对称。
也就是说,如果把函数图像沿某个垂直于x轴的直线折叠,两侧的图像完全重合。
在数学中,轴对称可以通过函数的方程来描述,方程中的x的取值与f(x)的取值满足关系。
中心对称中心对称是指函数关于某个点对称。
也就是说,如果把函数图像绕某个点旋转180度,图像完全重合。
中心对称的函数通常可以通过某个点为中心的规律来表示。
原点对称原点对称是指函数关于坐标原点对称。
也就是说,如果把函数图像绕坐标原点旋转180度,图像完全重合。
原点对称的函数满足特定的方程关系,通常可以通过函数的方程来描述。
函数周期性函数周期性是指函数在一定范围内具有重复出现的性质。
周期性的函数在某个间隔内的取值模式重复出现,这个间隔被称为函数的周期。
周期性函数在数学中有广泛的应用和研究。
函数的周期性可以通过函数的方程来描述,方程中的变量x和函数的取值f(x)之间存在周期性关系。
周期性函数常用来描述物理、生物等领域中具有循环特性的现象。
应用与总结函数对称性和周期性是数学中常见且重要的概念。
它们不仅用于描述函数的特性,还被广泛应用于建模、分析和解决实际问题。
了解函数对称性和周期性的概念,有助于我们更好地理解和应用数学知识。
通过对函数对称性和周期性的研究,我们可以更深入地了解函数的性质和变化规律,从而应用于解决实际问题。
同时,我们也能够更好地理解数学中其他相关概念和方法。
总而言之,掌握函数对称性和周期性的概念以及其在数学中的应用,将有助于我们在数学领域取得更好的成绩和应用数学知识解决实际问题的能力。
函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。
函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。
自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。
命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。
函数的基本性质(对称性、周期性)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期.2、对称性:(1)轴对称()()f a x f a x +=-⇔函数)(x f y =关于a x =对称注意:)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称.得证.若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2a b x +=对称. (2)点对称 ()()2f a x f a x b ++-=⇔函数)(x f y =关于点),(b a 对称 b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称.得证.若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称.3、周期性(1)如果()f x 满足()()()f x a f x b a b +=+≠,则()f x 是周期T a b =-的周期函数.(2)如果()f x 满足()()(0)f x a f x a +=-≠,则()f x 是周期2T a =的周期函数.(3)如果()f x 满足1()(0,()0)()f x a a f x f x +=≠≠且,或1()()f x a f x +=-,则()f x 是周期2T a =的周期函数.(4)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(5)若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(6)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.4、例题讲解例1、已知定义为R 的函数()x f满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )A. 恒小于0B.恒大于0 C .可能为0 D .可正可负 例2、在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( )A.在区间[2,1]--上是增函数,在区间[3,4]上是增函数B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是减函数例3、已知()113x f x x+=-,()()1f x f f x =⎡⎤⎣⎦,()()21f x f f x =⎡⎤⎣⎦,…,()()1n n f x f f x +=⎡⎤⎣⎦,则()20042f -=( ). A.17- B. 17C. 35-D.3 例4、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52例5、()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =(2009)f =________例6、已知函数f(x)的定义域为N ,且对任意正整数x ,都有f(x)=f(x -1)+f(x +1)若f(0)=2004,求f(2004).例7、已知对于任意a ,b ∈R ,有f(a +b )+f(a -b )=2f(a )f(b ),且f(x )≠0 ⑴求证:f(x )是偶函数;⑵若存在正整数m 使得f(m)=0,求满足f(x +T)=f(x )的一个T 值(T≠0).例8、已知f (x )是R 上的奇函数,且11()()22f x f x +=-,则f (1)+f (2)+f (3)=_______.例9、设奇函数y=f(x)的定义域为R ,f(1)=2,且对任意R x x ∈21,,都有),f(x )f(x )x f(x 2121+=+当x >0时,f(x)是增函数,则函数)(f y 2x -=在区间[-3,-2]上的最大值是____.例10、设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,2()f x x =,求)(x f 在k I 上的解析式.例11、设定义在R 上的偶函数()f x 满足(2)(2)f x f x -=+,且当[2,0]x ∈-时()f x 为增函数,若(2)0f -≥.求证:当[4,6]x ∈时,|()|f x 为减函数. 例12、设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(y x f y x f y f x f -⋅+=+ 求证:①)()2(x f x f =+π ②)()(x f x f -= ③ 1)(2)2(2-=x f x f变式、设函数)(x f 定义于R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,有)()()2()2(212121x x f x x f x f x f -⋅+=+求证:)()(x f x f -=.。
关于函数的对称性和周期性摘要:函数y=f(x)满足f(a+x)=f(b-x)时,函数y=f(x)的图象关于直线x=对称;函数y=f(x)满足f(a+x)+f(b-x)=c时,函数y=f(x)的图象关于点(,)对称;函数y=f(x)有两根对称轴x=a,x=b时,那么该函数必是周期函数,且对称轴之间距离的两倍必是函数的一个周期;函数y=f(x)满足f(a+x)+f(a-x)=c和f(b+x)+f(b-x)=c (a≠b)时,函数y=f(x)是周期函数。
函数的对称性、周期性是函数的两个基本性质。
中学数学中,研究函数,首看定义域、值域,然后就要研究对称性、周期性,并且在高考中也经常考察函数的对称性、周期性以及它们之间的联系。
下面我们就一些常见的性质进行研究。
一、函数的对称性1.函数y=f(x)满足f(a+x)=f(b-x)时,函数y=f(x)的图象关于直线x=对称。
证明:在函数y=f(x)上任取一点(x1,y1),则y1=f(x1),点(x1,y1)关于直线x=的对称点(a+b-x1,y1),当x=a+b-x1时,f(a+b-x1)=f[a+(b-x1)]=f[b-(b-x1)]=f(x1)=y1,故点(a+b-x1,y1)也在函数y=f(x)图象上。
由于点(x1,y1)是图象上任意一点,因此,函数的图象关于直线x=对称。
(注:特别地,a=b=0时,该函数为偶函数。
)2.函数y=f(x)满足f(a+x)+f(b-x)=c时,函数y=f(x)的图象关于点(,)对称。
证明:在函数y=f(x)上任取一点(x1,y1),则y1=f(x1),点(x1,y1)关于点(,)的对称点(a+b-x1,c-y1),当x=a+b-x1时,f(a+b-x1)=c-f[b-(b-x1)]=c-f(x1)=c-y1,即点(a+b-x1,c-y1)在函数y=f(x)的图象上。
由于点(x1,y1)为函数y=f(x)图象上的任意一点可知,函数y=f(x)的图象关于点(,)对称。
函数的对称性与周期性一、相关结论1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同)① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。
② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。
③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。
④ 若)(1)(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。
3.自对称性(内反)①若)()(x b f x a f -=+,则)(x f 的图像关于直线2ba x +=对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。
②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2(ba +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。
③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2,2(cb a +对称。
4.互对称性①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2ab x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2(ab -对称;③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。
5. 对称性与周期性的关系①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数,||2a b -为一个周期。
②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数,||2a b -为一个周期。
③若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函数,||4a b -为一个周期。
二、基础练习1.已知定义在}0|{≠x x 上的奇函数)(x f ,在区间)0(∞+,上单调递增,且0)21(=f ,若ABC ∆的内角A 满足0)(cos <A f ,则角A 的取值范围是( ) A .),32(ππ B .),(23ππ C .),(323ππ D .),32()2,3(ππππ2.定义在R 上偶函数)(x f 满足)2()(+=x f x f ,当43≤≤x 时,2)(-=x x f ,则( )A )(cos )(sin 2121f f <B )(cos )(sin 33ππf f >C )1(cos )1(sin f f <D )(cos )(sin 2323f f >3.设)(x f 是以3为周期的奇函数,若1)1(>f ,a f =)2(,则下列结论正确的是( ) A .2>a B .2-<a C .1>a D .1-<a4.定义在R 上的函数)(x f y =满足:)()(x f x f -=-,)1()1(x f x f -=+,且当]1,1[-∈x 时,3)(x x f =,则=)2010(f ( )A .1-B .0C .1D .25.设)(x f y =是R 上的偶函数,0)0(=f ,)(x g y =是R 上的奇函数,且对于R x ∈恒有)1()(+=x f x g ,则=)2008(f ________6.对于定义在R 上的函数)(x f ,有下列三个命题:①若)(x f 是奇函数,则)1(-=x f y 的图像关于直线1=x 对称;②若对于任意R x ∈有)1()1(-=+x f x f ,则)(x f y =的图像关于点)0,1(对称;③)1(-=x f y 的图像关于直线1=x 对称,则)(x f y =为偶函数。
其中正确命题的序号为___________7.若存在常数0>p ,使得函数)(x f 满足)2()(ppx f px f -=(R x ∈),则)(x f 的一个周期为___________8.定义在]2,2[-上的偶函数)(x f ,在区间]2,0[上单调递减,若)()1(m f m f <-,则实数m 的取值范围是___________三、补充练习1.设对任意,满足且方程恰有6个不同的实根,则此六个实根之和为( )A .18B .12C .9D .0 2.若的图象关于直线对称,则( )A .B .C .D . 3.定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 4.设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g-1(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。
1999; (B )2000; (C )2001; (D )2002。
5. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时,f (x) = x ,则f (7.5 ) = ( )(A) 0.5(B) -0.5(C) 1.5(D) -1.56.函数 y = sin (2x + 25π)的图像的一条对称轴的方程是( ) (A) x = -2π (B) x = -4π (C) x = 8π(D) x =45π7.已知是定义在实数集R 上的偶函数,是R 上的奇函数,又知(1)(是常数);(2),则的值为8.函数的图象关于直线对称,且时,则当时,的解析式为 。
9.已知定义在实数集R 上的函数满足:(1);(2);(3)当时解析式为,当时,求函数的解析式。
参考答案:1D ,2C ,3D ,4C ;5.0;6.①③;7.2p;8. ]21,1[-提示:3.∵)()3(x f x f =-∴1)1()31()2()2(-<-=--=--=f f f f 4. ∵)1()]1([)1()1(--=--=-=+x f x f x f x f , ∴)(]1)1[()]1(1[)2(x f x f x f x f -=-+-=++=+,∴)()]([)2()]2(2[)4(x f x f f x f x f x f =--=+-=++=+,∴4=T5. )1()1()()(+-=+-⇒-=-x f x f x g x g ,)1()1()()(-=+-⇒=-x f x f x f x f ,∴)1()1(+-=-x f x f 即)2()(+-=x f x f ,∴)()4(x f x f =+即4=T7. 令2p px t -=,则)()2(t f p t f =+,2p T = 8. |)(||)1(|m f m f <-⇒]21,1[-补充练习答案: 1解:依条件知图象关于直线对称,方程六个根必分布在对称轴两侧,且两两对应以(3,0)点为对称中心,故,所以,选A 。
2解:由得)24sin()24cos(-x a x -+-=ππ)8(2sin )8(2cos ππ----=x a x即∴3解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。
故选(A)4解:∵y = f(x -1)和y = g-1(x -2)函数的图像关于直线y = x 对称,∴y = g-1(x -2) 反函数是y = f(x -1),而y = g-1(x -2)的反函数是:y = 2 + g(x),∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001,故f(4) = 2001,应选(C ) 5解::∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心; 又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为4的周期函数。
∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B) 6解:函数 y = sin (2x +25π)的图像的所有对称轴的方程是2x + 25π = k π+2π∴x =2πk -π,显然取k = 1时的对称轴方程是x = -2π 故选(A) 7解:由条件(2)知,令,则,故,即为以4为周期的周期函数,又由,所以8解:依条件,设,则,故 9解当时,,当时,,1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a -x ,2b -y )也在y = f (x)图像上,∴ 2b -y = f (2a -x) 即y + f (2a -x)=2b 故f (x) + f (2a -x) = 2b ,必要性得证。
(充分性)设点P(x 0,y 0)是y = f (x)图像上任一点,则y 0 = f (x 0) ∵ f (x) + f (2a -x) =2b ∴f (x 0) + f (2a -x 0) =2b ,即2b -y 0 = f (2a -x 0) 。
故点P ‘(2a -x 0,2b -y 0)也在y = f (x) 图像上,而点P 与点P ‘关于点A (a ,b)对称,充分性得征。
推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b +对称,反之亦然。
证明 :已知对于任意的00,x y 都有f(a+0x ) =f(b -0x )=0y 令a+0x ='x , b -0x ="x则A('x ,0y ),B("x ,0y )是函数y=f(x)上的点显然,两点是关于x= 2a b+对称的。