DSP常识
- 格式:pdf
- 大小:323.72 KB
- 文档页数:34
dsp知识点总结一、DSP基础知识1. 信号的概念信号是指用来传输信息的载体,它可以是声音、图像、视频、数据等各种形式。
信号可以分为模拟信号和数字信号两种形式。
在DSP中,我们主要研究数字信号的处理方法。
2. 采样和量化采样是指将连续的模拟信号转换为离散的数字信号的过程。
量化是指将信号的幅度离散化为一系列离散的取值。
采样和量化是数字信号处理的基础,它们决定了数字信号的质量和准确度。
3. 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,它可以将信号的频率分量分解出来,从而可以对信号进行频域分析和处理。
傅里叶变换在DSP中有着广泛的应用,比如滤波器设计、频谱分析等。
4. 信号处理系统信号处理系统是指用来处理信号的系统,它包括信号采集、滤波、变换、编解码、存储等各种功能。
DSP技术主要用于设计和实现各种类型的信号处理系统。
二、数字滤波技术1. FIR滤波器FIR滤波器是一种具有有限长冲激响应的滤波器,它的特点是结构简单、稳定性好、易于设计。
FIR滤波器在数字信号处理中有着广泛的应用,比如音频处理、图像处理等。
2. IIR滤波器IIR滤波器是一种具有无限长冲激响应的滤波器,它的特点是频率选择性好、相位延迟小。
IIR滤波器在数字信号处理中也有着重要的应用,比如通信系统、控制系统等。
3. 数字滤波器设计数字滤波器的设计是数字信号处理的重要内容之一,它包括频域设计、时域设计、优化设计等各种方法。
数字滤波器设计的目标是满足给定的频率响应要求,并且具有良好的稳定性和性能。
4. 自适应滤波自适应滤波是指根据输入信号的特性自动调整滤波器参数的一种方法,它可以有效地抑制噪声、增强信号等。
自适应滤波在通信系统、雷达系统等领域有着重要的应用。
三、数字信号处理技术1. 数字信号处理器数字信号处理器(DSP)是一种专门用于数字信号处理的特定硬件,它具有高速运算、低功耗、灵活性好等特点。
DSP广泛应用于通信、音频、图像等领域,是数字信号处理技术的核心。
1.DSP选型:主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O 口数量、中断数量、DMA通道数等。
DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。
选择DSP可以根据以下几方面决定:1)速度:DSP速度一般用MIPS或FLOPS表示,即百万次/秒钟。
根据您对处理速度的要求选择适合的器件。
一般选择处理速度不要过高,速度高的DSP,系统实现也较困难。
2)精度:DSP芯片分为定点、浮点处理器,对于运算精度要求很高的处理,可选择浮点处理器。
定点处理器也可完成浮点运算,但精度和速度会有影响。
3)寻址空间:不同系列DSP程序、数据、I/O 空间大小不一,与普通MCU不同,DSP在一个指令周期内能完成多个操作,所以DSP的指令效率很高,程序空间一般不会有问题,关键是数据空间是否满足。
数据空间的大小可以通过DMA的帮助,借助程序空间扩大。
4)成本:一般定点DSP的成本会比浮点DSP的要低,速度也较快。
要获得低成本的DSP系统,尽量用定点算法,用定点DSP。
5)实现方便:浮点DSP的结构实现DSP系统较容易,不用考虑寻址空间的问题,指令对C语言支持的效率也较高。
6)内部部件:根据应用要求,选择具有特殊部件的DSP。
如:C2000适合于电机控制;OMAP适合于多媒体等。
1)C5000系列(定点、低功耗):C54X,C54XX,C55X相比其它系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。
处理速度在80MIPS--400MIPS之间。
C54XX和C55XX一般只具有McBSP同步串口、HPI并行接口、定时器、DMA等外设。
值得注意的是C55XX提供了EMIF外部存储器扩展接口,可以直接使用SDRAM,而C54XX则不能直接使用。
两个系列的数字IO 都只有两条。
2)C2000系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN总线/PWM 发生器、数字IO 脚等。
dsp重点知识点总结1. 数字信号处理基础数字信号处理的基础知识包括采样定理、离散时间信号、离散时间系统、Z变换等内容。
采样定理指出,为了保证原始信号的完整性,需要将其进行采样,并且采样频率不能小于其最高频率的两倍。
离散时间信号是指在离散时间点上取得的信号,可以用离散序列表示。
离散时间系统是指输入、输出和状态都是离散时间信号的系统。
Z变换将时域的离散信号转换为Z域的函数,它是离散时间信号处理的数学基础。
2. 时域分析时域分析是对信号在时域上的特性进行分析和描述。
时域分析中常用的方法包括时域图形表示、自相关函数、互相关函数、卷积等。
时域图形表示是通过时域波形来表示信号的特性,包括幅度、相位、频率等。
自相关函数是用来描述信号在时间上的相关性,互相关函数是用来描述不同信号之间的相关性。
卷积是一种将两个信号进行联合的运算方法。
3. 频域分析频域分析是对信号在频域上的特性进行分析和描述。
频域分析中常用的方法包括频谱分析、傅里叶变换、滤波器设计等。
频谱分析是通过信号的频谱来描述信号在频域上的特性,可以得到信号的频率成分和相位信息。
傅里叶变换是将时域信号转换为频域信号的一种数学变换方法,可以将信号的频率成分和相位信息进行分析。
滤波器设计是对信号进行滤波处理,可以剔除不需要的频率成分或增强需要的频率成分。
4. 数字滤波器数字滤波器是数字信号处理中的重要组成部分,通过对信号进行滤波处理,可以实现对信号的增强、降噪、分离等效果。
数字滤波器包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器两种类型。
有限冲激响应(FIR)滤波器是一种只有有限个系数的滤波器,它可以实现线性相位和稳定性处理。
无限冲激响应(IIR)滤波器是一种有无限个系数的滤波器,它可以实现非线性相位和较高的滤波效果。
5. 离散傅里叶变换(DFT)和快速傅里叶变换(FFT)离散傅里叶变换(DFT)是将时域离散信号转换为频域离散信号的一种数学变换方法,其计算复杂度为O(N^2)。
DSP部分知识点1、C54x是TI公司16位定点DSP。
2、C54x采用多总线结构,其中 PB 为程序总线, CB、 DB、EB 为数据总线, EB 为写总线。
3、C54x内核CPU包含一个 40bit的ALU算术逻辑运算单元,2 个40bit的累加器和一个40bit的桶形移位寄存器。
4、对进入ALU的数进行符号扩展的方法为:当 SXM=0 时不进行符号位扩展, SXM=1时进行符号位扩展。
5、在ALU中运算结果产生溢出时,若 OVM=0 ,则不对结果做任何处理,反之 OVM=1 则进行溢出处理。
6、当运算结果产生溢出时会在 OVA、 OVB 中置相应的标志位。
7、DSP可以处理双16位或双精度算术运算,当 C16=0 为双精度运算方式,当 C16=1 为双16位运算方式。
8、累加器A/B结构完全一样,AG为保护位,AH为高阶位,AL为低阶位。
9、DSP芯片按照其用途分类,可以分为通用型和专用型两种。
10、移位寄存器有三种移位方式: ASM 、T的低6位、指令中的立即数。
11、MAC乘——累加器可以在一个流水线周期完成1次乘法和1次加法运算。
12、比较选择存储单元CSSU的功能是将累加器的高阶位和低阶位进行比较,将较大存入指定的数据存储器。
13、指数编码器的功能是将累加器中的数变成指数部分和底数两部分,并将指数存于暂存器T 。
14、CPU的状态与控制寄存器分别为ST0、ST1、PMST,其中 PMST 主要用以设置处理器的工作模式。
15、C54x片内RAM分成 SARAM 和 DARAM 两个部分,其中DARAM 允许在一个周期内访问两次。
16、C54x可以工作在2种模式,即微处理器模式(MP)和微计算机模式(MC),具体由MP/MC#引脚控制。
17.DSP的狭义理解为数字信号处理器,广义理解为数字信号处理方法。
18.在直接寻址中,指令代码包含了数据存储器地址的低 7 位。
当ST1中直接寻址编辑方式位CPL =0 时,与DP相结合形成16位数据存储器地址;当ST1中直接寻址编辑方式位CPL =1 时,加上SP基地址形成数据存储器地址。
1 DSP芯片的特点:(1).哈佛结构(程序空间和数据空间分开)(2).多总线结构.(3)流水线结构(取指、译码、译码、寻址、读数、执行)(4)多处理单元. (5)特殊的DSP指令(6).指令周期短. (7)运算精度高.(8)硬件配置强.(9)DSP最重要的特点:特殊的内部结构、强大的信息处理能力及较高的运行速度。
2 三类TMS320:(1)TMS320C2000适用于控制领域(2)TMS320C5000应用于通信领域(3)TMS320C6000应用于图像处理3 DSP总线结构:C54x片内有8条16位主总线:4条程序/数据总线和4条对应的地址总线。
1条程序总线(PB):传送自程序储存器的指令代码和立即操作数。
3条数据总线(CB、DB、EB):CB和EB传送从数据存储器读出的操作数;EB传送写到存储器中的数据。
4条地址总线(PAB、CAB、DAB、EAB)传送相应指令所需要的代码4存储器的分类:64k字的程序存储空间、64K字的数据存储空间和64K字的I/O空间(执行4次存储器操作、1次取指、2次读操作数和一次写操作数。
5存储器空间分配片内存储器的形式有DARAM、SARAM、ROM 。
RAM安排到数据存储空间、ROM构成程序存储空间。
(1)程序空间:MP/MC=1 40000H~FFFFH 片外MP/MC=0 4000H~EDDDH 片外FF00H~FFFFH 片内OVL Y=1 0000H~007FH 保留0080H~007FH 片内OVL Y=0 0000H~3FFFH片外(2)数据空间:DROM=1 F000H~F3FFH 只读空间FF00H~FFFH保留DROM=0 F000H~FEFFH 片外6数据寻址方式(1)立即寻址(2)绝对寻址<两位>(3)累加器寻址(4)直接寻址@<包换数据存储器地址的低7位>优点:每条指令只需一个字(5)间接寻址*按照存放某个辅助寄存器中的16位地址寻址的AR0~AR7(7)储存器映像寄存器寻址(8)堆栈寻址7寻址缩写语Smem:16位单寻址操作数Xmem Ymem 16位双dmad pmad PA16位立即数(0-65535)scr源累加器dst目的累加器lk 16位长立即数8状态寄存器ST0 15~13ARP辅助寄存器指针12TC测试标志位11C进位位10累积起A 的一出标志位OV A 9OVB 8~0DP数据存储器页指针9状态寄存器ST1 CPL:直接寻址编辑方式INTM =0开放全部可屏蔽中断=1关闭C16 双16位算数运算方式10定点DSP 浮点DSP:定点DSP能直接进行浮点运算,一次完成是用硬件完成的,而浮点需要程序辅助。
1)数字信号处理器:通过专用集成电路芯片利用数字信号处理理论,在芯片上运用目标程序实现对信号的某种处理。
2)Digital Signal Processing 数字信号处理的理论和方法。
3)Digital Signal Processor 只用于数字信号处理可编程微处理器。
自从20世纪70年代微处理器诞生以来,就一直沿用通用CPU(以微处理型计算机里使用的最多的CPU 为代表),微控制器MCU(国内通常称为单片机)和DSP处理器三个方向在发展4)DSP技术的发展因其内涵而分为两个领域:数字信号处理的理论和方法近年来得到迅速发展;为了满足应运市场的需求,随着微电子科学与技术的进步,DSP处理器的性能也在迅速提高5)数字信号处理器的优越性:可程控、稳定性好、可重复性好、抗干扰性能好、实现自适应算法、数据压缩、大规模集成、模拟数字信号信号处理的可替代性6)模拟信号处理不能被数字信号处理完全替代的理由:自然界的信号绝大多数是模拟信号;模拟信号处理系统从根本上说是实用的;射频信号的处理要由模拟信号系统来完成7)冯﹒诺依曼结构:程序代码和数据共用一个公用的存储空间和单一的地址与数据总线8)哈佛结构:程序代码和数据的存储空间分开,各自有自己的地址与数据总线9)哈佛结构与冯诺依曼结构图(5页)10)改善哈佛结构(Modified Harvard Architecture)为了进一步提高信号处理的效率,在哈佛结构的基础上,又加以改善,使得程序代码和数据存储空间之间的可以进行数据的传送11)流水技术:将各指令的各个步骤重叠重叠起来执行,而不是一条指令执行完成后,才开始执行下一条指令,即第一条指令取指后,译码时,第二条指令取指;第一条指令取指时,第二条指令译码,以此类推12)DSP的外设主要包括的部分:时钟发生器、定时器、软件可编程等状态发生器,以便使较快的片内设施与较慢的片外电路及存储器协调。
通用I/O、同步串口(SSP)与异步串口(ASP)、主机接口(HIP)、JTAG边界扫描逻辑电路13)定点DSP处理器指的是数据格式用整数和小数表示14)数据的浮点格式指的是指数和尾数的形式表示15)MIPS(Millions of Instruction Per Second)每秒执行百万条指令16)MOPS(Millions of Operation Per Second)每秒执行百万次操作17)MMACS(Millions Multiply-Accumulates Per Second)每秒百万次乘加运算18)EDN嵌入式微处理器指标联盟(EDN Embedded Microprocessor BenchmarkConsortium EEMBC)是一个工业界的非盈利标准化组织,其目的是发展与促进实用的嵌入式8bit、16bit、32bit、64bit结构微处理器、微控制器、数字信号处理器的性能指标19)EEMBC定义两类指标:标准C语言的指标和充分优化后的指标20)FFT执行时间:运行一个N点FFT程序所需的时间21)开发者组织选择汇编语言的原因:DSP应用往往需要使用大量的各种各样的数据,程序员如果使用高级语言编译器,则产生的汇编语言代码执行速度比较慢。
DSP复习要点第一章绪论1、数的定标:Qn表示。
例如:16进制数2000H=8192,用Q0表示16进制数2000H=0.25,用Q15表示2、‟C54x小数的表示方法:采用2的补码小数;.word 32768 *707/10003、定点算术运算:乘法:解决冗余符号位的办法是在程序中设定状态寄存器STl中的FRCT位为1,让相乘的结果自动左移1位。
第二章CPU结构和存储器设置一、思考题:1、C54x DSP的总线结构有哪些特点?答:TMS320C54x的结构是围绕8组16bit总线建立的。
(1)、一组程序总线(PB):传送从程序存储器的指令代码和立即数。
(2)、三组数据总线(CB,DB和EB):连接各种元器件,(3)、四组地址总线(PAB,CAB,DAB和EAB)传送执行指令所需要的地址。
2、C54x DSP的CPU包括哪些单元?答:'C54X 芯片的CPU包括:(1)、40bit的算术逻辑单元(2)、累加器A和B(3)、桶形移位寄存器(4)、乘法器/加法器单元(5)、比较选择和存储单元(6)、指数编码器(7)、CPU状态和控制寄存器(8)、寻址单元。
1)、累加器A和B分为三部分:保护位、高位字、地位字。
保护位保存多余高位,防止溢出。
2)、桶形移位寄存器:将输入数据进行0~31bits的左移(正值)和0~15bits的右移(负值)3)、乘法器/加法器单元:能够在一个周期内完成一次17*17bit的乘法和一次40位的加法4)、比较选择和存储单元:用维比特算法设计的进行加法/比较/选择运算。
5)、CPU状态和控制寄存器:状态寄存器ST0和ST1,由置位指令SSBX和复位指令RSBX控制、处理器模式状态寄存器PMST2-3、简述’C54x DSP的ST1,ST0,PMST的主要功能。
答:’C54x DSP的ST1,ST0,PMST的主要功能是用于设置和查看CPU的工作状态。
•ST0主要反映处理器的寻址要求和计算机的运行状态。
一、名词解释1、数字信号处理理论(Digital Signal Processing):频谱分析、数字滤波器设计、自适应信号处理、信号压缩、信号建模……2、数字信号处理器 (Digital Signal Processor) :专门针对数字信号的数学运算需要而设计开发的一类集成电路芯片3、冯·诺依曼结构:也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。
由于取指令和存取数据要从同一个存储空间存取,经由同一总线传输,因而它们无法重叠执行,只有一个完成后再进行下一个。
4、哈佛结构:是一种将程序指令存储和数据存储分开的存储器结构。
可以减轻程序运行时的访存瓶颈。
5、专用的硬件乘法器:典型的FFT、IIR和FIR等数字信号处理算法中,乘法是DSP运算的重要组成部分;DSP芯片中有专用的硬件乘法器,一次或多次的乘法累加运算可以在一个指令周期内完成。
6、特殊的DSP指令:专门为实现数字信号处理的算法而设置特殊指令;位倒序寻址、循环寻址等特殊指令能够方便快速地实现FFT算法。
7、流水线操作:执行指令的几个阶段在程序执行过程中是重叠的,即几条不同的指令同时处于激活状态,每条指令处于不同的阶段。
8、晶振时钟信号:‘28x DSP片上晶振电路模块允许采用内部振荡器或外部时钟源为CPU内核提供时钟;在使用片上晶振模块的内部振荡器时,应当在X1/XCLKIN和X2两个引脚之间连上一个石英晶振,片上晶振模块输出与石英晶振频率相同的时钟信号,典型的晶振频率是30MHz。
采用外部时钟应把时钟信号直接接到X1/XCLKIN引脚,X2引脚则必须悬空,这时内部振荡器不工作,片上晶振模块输出该外部时钟信号。
二、简答题1.PWM变化PWM输出变化由一个对称/非对称波形发生器和一个相关输出逻辑控制,同时还要依赖于以下几种情况:(1)GPTCONA/B中位的定义;(2)定时器的计数模式;(3)定时器处于连续增/减计数模式下的计数方向。
第四章连续时间信号的采样1、几个概念T 或:采样周期;:采样频率;:采样角频率s T T f s /1=T s /2πΩ=ω:归一化角频率与ω的关系:,可以这样理解,该归一化是指中的归一化s ΩT Ωω=)(Ωj X s s Ω=Ω到中的。
在中代入即可得到。
)(ωj e X πω2=)(Ωj X s T /ω=Ω)(ωj e X 2、采样过程数学上可以分为两部分:周期冲击串的调制和冲击串到离散时间序列的转换。
连续时间信号被周期冲击串调制到(注意,此时)(t x c ∑∞−∞=−=n nT t t s )()(δ)(t x s也是一个周期冲击串,并且数学上仍然属于连续时间信号),再经过频率归一化)(t x s )(t x s 在数学上消除信号与时间的关系,得到与时间无关的序列。
频域关系如下:)(][nT x n x c =∑∞−∞=Ω−Ω=Ωk s c s kj j X T j X )(1)(的离散时间傅里叶变换为:][n x )(ωj e X ∑∞−∞=−=k c j Tkj T j X T e X )2(1)(πωω3、奈奎斯特采样定理:N s TΩ≥=Ω22π注意:①输入信号一定要是带限的!!!②称为奈奎斯特频率;③而2称之N ΩN Ω为奈奎斯特率一定要注意!!!!4、由样本重构带限信号(原理框图看一下书)步骤1:序列到冲击串的转换其中T 就是x[n]的采样周期,所以要重构,光凭离散∑∞−∞=−=n s nT t n x t x ][][)(δ时间序列x[n]是不够的,你必须要知道x[n]产生时的采样周期T 步骤2:经过理想重构低通滤波器滤波,得到,该滤波器满足:)(t x r 增益为T截止频率(通常=/2=π/T )c Ωc Ωs Ω频率响应Tt T t t h r //sin )(ππ=由上两步,则整个系统的输出为:∑∞−∞=−−=n r TnT t T nT t n x t x /)()/)(sin(][)(ππ注解:①每一个函数在某些点上与的值相等,求和后能够在所TnT t T nT t n x /)()/)(sin(][−−ππ)(t x c 以采样点上与相等;)(t x c ②若重构时没有混叠,低通滤波器不仅能重构采样点的准确值,还在内插出采样点之间的点的准确值;③当然,若有混叠,则②不能达到,仅满足①。
1.5V/3.3V如何混接?TI DSP的发展同集成电路的发展一样,新的DSP都是3.3V的,但目前还有许多外围电路是5V的,因此在DSP系统中,经常有5V和3.3V的DSP混接问题。
在这些系统中,应注意: 1)DSP 输出给5V的电路(如D/A),无需加任何缓冲电路,可以直接连接。
2)DSP输入5V的信号(如A/D),由于输入信号的电压>4V,超过了DSP的电源电压,DSP的外部信号没有保护电路,需要加缓冲,如74LVC245等,将5V信号变换成3.3V的信号。
3)仿真器的JTAG口的信号也必须为3.3V,否则有可能损坏DSP。
2.为什么要片内RAM大的DSP效率高?目前DSP发展的片内存储器RAM越来越大,要设计高效的DSP系统,就应该选择片内RAM 较大的DSP。
片内RAM同片外存储器相比,有以下优点: 1)片内RAM的速度较快,可以保证DSP无等待运行。
2)对于C2000/C3x/C5000系列,部分片内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。
3)片内RAM运行稳定,不受外部的干扰影响,也不会干扰外部。
4)DSP片内多总线,在访问片内RAM时,不会影响其它总线的访问,效率较高。
3.为什么DSP从5V发展成3.3V?超大规模集成电路的发展从1um,发展到目前的0.1um,芯片的电源电压也随之降低,功耗也随之降低。
DSP也同样从5V发展到目前的3.3V,核心电压发展到1V。
目前主流的DSP 的外围均已发展为3.3V,5V的DSP的价格和功耗都价格,以逐渐被3.3V的DSP取代。
4如何选择DSP的电源芯片?TMS320LF24xx:TPS7333QD,5V变3.3V,最大500mA。
TMS320VC33: TPS73HD318PWP,5V变3.3V和1.8V,最大750mA。
TMS320VC54xx:TPS73HD318PWP,5V变3.3V和1.8V,最大750mA; TPS73HD301PWP,5V变3.3V和可调,最大750mA。
TMS320VC55xx:TPS73HD301PWP,5V变3.3V和可调,最大750mA。
TMS320C6000: PT6931,TPS56000,最大3A。
5.软件等待的如何使用?DSP的指令周期较快,访问慢速存储器或外设时需加入等待。
等待分硬件等待和软件等待,每一个系列的等待不完全相同。
1)对于C2000系列:硬件等待信号为READY,高电平时不等待。
软件等待由WSGR寄存器决定,可以加入最多7个等待。
其中程序存储器和数据存储器及I/O可以分别设置。
2)对于C3x系列:硬件等待信号为/RDY,低电平是不等待。
软件等待由总线控制寄存器中的SWW和WTCNY决定,可以加入最多7个等待,但等待是不分段的,除了片内之外全空间有效。
3)对于C5000系列:硬件等待信号为READY,高电平时不等待。
软件等待由SWWCR和SWWSR寄存器决定,可以加入最多14个等待。
其中程序存储器、控制程序存储器和数据存储器及I/O可以分别设置。
4)对于C6000系列(只限于非同步存储器或外设):硬件等待信号为ARDY,高电平时不等待。
软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同异步的存储器或外设接口。
6.中断向量为什么要重定位?为了方便DSP存储器的配置,一般DSP的中断向量可以重新定位,即可以通过设置寄存器放在存储器空间的任何地方。
注意:C2000的中断向量不能重定位。
7.DSP的最高主频能从芯片型号中获得吗?TI的DSP最高主频可以从芯片的型号中获得,但每一个系列不一定相同。
1)TMS320C2000系列:TMS320F206-最高主频20MHz。
TMS320C203/C206-最高主频40MHz。
TMS320F24x-最高主频20MHz。
TMS320LF24xx-最高主频30MHz。
TMS320LF24xxA-最高主频40MHz。
TMS320LF28xx-最高主频150MHz。
2)TMS320C3x系列:TMS320C30:最高主频25MHz。
TMS320C31PQL80:最高主频40MHz。
TMS320C32PCM60:最高主频30MHz。
TMS320VC33PGE150:最高主频75MHz。
3)TMS320C5000系列:TMS320VC54xx:最高主频160MHz。
TMS320VC55xx:最高主频300MHz。
4)TMS320C6000系列:TMS320C62xx:最高主频300MHz。
TMS320C67xx:最高主频230MHz。
TMS320C64xx:最高主频720MHz。
8.DSP可以降频使用吗?可以,DSP的主频均有一定的工作范围,因此DSP均可以降频使用。
9.如何选择外部时钟?DSP的内部指令周期较高,外部晶振的主频不够,因此DSP大多数片内均有PLL。
但每个系列不尽相同。
1)TMS320C2000系列:TMS320C20x:PLL可以÷2,×1,×2和×4,因此外部时钟可以为5MHz-40MHz。
TMS320F240:PLL可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5和×9,因此外部时钟可以为2.22MHz-40MHz。
TMS320F241/C242/F243:PLL可以×4,因此外部时钟为5MHz。
TMS320LF24xx:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。
TMS320LF24xxA:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。
2)TMS320C3x系列:TMS320C3x:没有PLL,因此外部主频为工作频率的2倍。
TMS320VC33:PLL可以÷2,×1,×5,因此外部主频可以为12MHz-100MHz。
3)TMS320C5000系列:TMS320VC54xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为0.625MHz-50MHz。
TMS320VC55xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为6.25MHz-300MHz。
4)TMS320C6000系列:TMS320C62xx:PLL可以×1,×4,×6,×7,×8,×9,×10和×11,因此外部主频可以为11.8MHz -300MHz。
TMS320C67xx:PLL可以×1和×4,因此外部主频可以为12.5MHz-230MHz。
TMS320C64xx:PLL可以×1,×6和×12,因此外部主频可以为30MHz-720MHz十三.如何选择DSP的外部存储器?DSP的速度较快,为了保证DSP的运行速度,外部存储器需要具有一定的速度,否则DSP访问外部存储器时需要加入等待周期。
1)对于C2000系列: C2000系列只能同异步的存储器直接相接。
C2000系列的DSP目前的最高速度为150MHz。
建议可以用的存储器有:CY7C199-15:32K×8,15ns,5V;CY7C1021-12:64K×16,15ns,5V; CY7C1021V33-12:64K×16,15ns,3.3V。
2)对于C3x系列: C3x系列只能同异步的存储器直接相接。
C3x系列的DSP的最高速度,5V 的为40MHz,3.3V的为75MHz,为保证DSP无等待运行,分别需要外部存储器的速度<25ns 和<12ns。
建议可以用的存储器有:ROM: AM29F400-70:256K×16,70ns,5V,加入一个等待;AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入两个等待(目前没有更快的Flash)。
SRAM: CY7C199-15:32K×8,15ns,5V;CY7C1021-15:64K×16,15ns,5V;CY7C1009-15:128K×8,15ns,5V;CY7C1049-15:512K×8,15ns,5V;CY7C1021V33-15:64K×16,15ns,3.3V;CY7C1009V33-15:128K×8,15ns,3.3V;CY7C1041V33-15:256k×16,15ns,3.3V。
3)对于C54x系列: C54x系列只能同异步的存储器直接相接。
C54x系列的DSP的速度为100MHz或160MHz,为保证DSP无等待运行,需要外部存储器的速度<10ns或<6ns。
建议可以用的存储器有:ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入5或9个等待(目前没有更快的Flash)。
SRAM: CY7C1021V33-12:64K×16,12ns,3.3V,加入一个等待;CY7C1009V33-12:128K×8,12ns,3.3V,加入一个等待。
4)对于C55x和C6000系列: TI的DSP中只有C55x和C6000可以同同步的存储器相连,同步存储器可以保证系统的数据交换效率更高。
ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V。
SDRAM: HY57V651620BTC-10S:64M,10ns。
SBSRAM: CY7C1329-133AC,64k×32;CY7C1339-133AC,128k×32。
FIFO:CY7C42x5V-10ASC,32k/64k×18。
十四.DSP芯片有多大的驱动能力?DSP的驱动能力较强,可以不加驱动,连接8个以上标准TTL门。
十五.调试TMS320C2000系列的常见问题?1)单步可以运行,连续运行时总回0地址: Watchdog没有关,连续运行复位DSP回到0地址。
2)OUT文件不能load到片内flash中: Flash不是RAM,不能用简单的写指令写入,需要专门的程序写入。
CCS和C Source Debugger中的load命令,不能对flash写入。
OUT文件只能load 到片内RAM,或片外RAM中。
3)在flash中如何加入断点:在flash中可以用单步调试,也可以用硬件断点的方法在flash中加入断点,软件断点是不能加在ROM中的。