即
vx y
y0 0 .3 3 2 0 6 v
v x
即
0
vx y
y 0 0 . 3 3 2 v
v x
总 摩 阻 D : (b为 板 宽 )
L
D 0 d A b 0 d x 0 . 6 6 4 v b R e L
A
0
总 阻 力 系 数 :C d :
Cd
D
0
.5
v
2
A
1 .3 2 8
边界层理论的物理意义:
把绕流物体流动分为两个部分,即边界层的流动和势流流
动,主流区流动未受到固体壁面的影响,不发生切变,
故
这种无切变,不可压缩流体的流动称为势流。
4.1.2 边界层的流yx 态0
层流边界层:开始进入表面的一段距离,δ较 小,
流体的扰动不够发展,粘性力起主导作用。
17.05.2020 .
vy
vx y
1
P x
2vx y 2
平板表面边界层
Q
P y
0
又 势 流 区 vx
v,无 压 力 降 ,依
流 体 柏 努 利 方 程 ,故 有 平 板 表 面 P 0 x
17.05.2020 .
6
4.2.2 微分方程的解:
vx
vx x
vy
vx y
2v x y 2
vx vy 0 x y 布 拉 修 斯 对 上 方 程 组 引 入 流 函 数 ( x, y ),将 偏 微 分 方程化为可解的常微分方程
3
过渡区:随x的增大, δ也增大,惯性力作用 上升,层→湍转变为过渡区
湍流边界层:靠近平板表面,粘性力仍处于主导地位 (y=0,vx=0)有一定厚度的层流表层在湍流边界层内,距 离面板远处的流体,虽流速略小于vx,但已变得较大,并 为湍流,称其为湍流核心区。