第五届全国高中数学青教师观摩与评比活动:《函数奇偶性》教案与说课稿
- 格式:doc
- 大小:97.00 KB
- 文档页数:4
《函数的奇偶性》说课稿《函数的奇偶性》说课稿1一、教材分析函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。
因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二。
教学目标1.知识目标:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。
2.能力目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
3.情感目标:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。
三。
教学重点和难点教学重点:函数的奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法与格式。
四、教学方法为了实现本节课的教学目标,在教法上我采取:1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与已知的距离,激发学生求知欲,()调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
五、学习方法1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
六。
教学程序(一)创设情景,揭示课题"对称"是大自然的一种美,这种"对称美"在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性。
f(_)= _2 f(_)=__通过讨论归纳:函数是定义域为全体实数的抛物线;函数f (_)=_是定义域为全体实数的直线;各函数之间的共性为图象关于轴对称。
函数的奇偶性一、引入在初中数学的学习中,我们学习了许多关于函数的知识,比如函数的定义、图像、性质等。
在这些知识中,函数的奇偶性则是我们需要重点掌握和理解的知识点之一。
那么函数的奇偶性具体是什么呢?为什么要学习它呢?今天我们就来深入探讨一下这个知识点。
二、概念解释1. 奇函数和偶函数先来看一下什么是奇函数和偶函数。
定义:如果对于任意的x均有f(−x)=−f(x),则称函数f(x)为奇函数。
比如y=x3。
如果对于任意的x均有f(−x)=f(x),则称函数f(x)为偶函数。
比如y=x2。
那么,如何来判断一个函数是奇函数还是偶函数呢?可以使用函数的图像来判断。
如下图所示,左边的函数图像为奇函数,右边的函数图像为偶函数。
奇偶性图像奇偶性图像可以看出,奇函数和偶函数的函数图像都具有一定的对称性。
2. 奇偶函数的性质接下来,我们来看一下奇偶函数的性质。
性质1:奇函数的对称中心为原点(0,0)。
偶函数的对称中心为y轴。
性质2:奇函数乘偶函数为奇函数。
奇函数加偶函数为奇函数。
偶函数乘奇函数为奇函数。
偶函数加奇函数为奇函数。
性质3:奇函数的积分区间为[−a,a],积分结果为0,其中a>0。
偶函数的积分区间为[−a,a],积分结果为$2\\int_{0}^{a}f(x)\\mathrm{d}x$,其中a>0。
三、例题演练1. 判断函数的奇偶性例题1:判断函数f(x)=x3−2x的奇偶性。
解析:对于任意的x,都有 $f(-x)=(-x)^3-2\\times(-x)=-x^3+2x=-f(x)$,因此f(x)是奇函数。
2. 奇偶函数性质的应用例题2:已知函数f(x)是偶函数,且在区间[0,3]上的积分为6。
求函数g(x)=f(x+2)−2在区间[−1,2]上的积分。
解析:首先,f(x)是偶函数,即对于任意的x,有f(−x)=f(x)。
因此,g(x)=f(x+2)−2=f(−(x−2))−2=f(2−x)−2。
函数的奇偶性引入大家好,我是现代数学教师,今天我来给大家讲解《函数的奇偶性》这一话题。
让我们开始这一趟数学之旅!首先,让我们回顾一下数学中的“奇偶性”概念。
在数学中,奇偶性通常用来描述一个数或者一个函数在变量变化时的规律性。
对于数学函数,我们可以通过对函数的自变量奇偶性的变化来探索这个函数的奇偶性质。
学习目标在学习完本节课后,我们将了解以下内容:•掌握函数奇偶性的定义•能够判断一个函数的奇偶性•能够利用函数的奇偶性来简化计算函数的奇偶性定义首先,让我们来定义函数的奇偶性。
对于一个函数f(x),我们称它为: - 奇函数,当且仅当f(−x)=−f(x)对于所有x成立; - 偶函数,当且仅当f(−x)=f(x)对于所有x成立; - 既不是奇函数也不是偶函数,当存在至少一个x使得f(−x)eqf(x)且f(−x)eq−f(x)成立。
上述定义意味着,如果一个函数既不是奇函数也不是偶函数,那么我们称它为“无奇偶性”的函数。
判断函数的奇偶性现在我们已经了解了函数奇偶性的定义,接下来我们就来看看如何判断一个函数的奇偶性。
奇函数对于奇函数而言,我们起始于f(−x)=−f(x)的假设,推导至一一般情况的有效方法是:•将f(x)变为−f(−x);•利用f(−x)=−f(x)替代−f(−x);•得到结果中−f(x)=f(−x)。
通过这些步骤我们得知,如果一个函数f(x)满足f(−x)=−f(x),那么这个函数一定是奇函数。
偶函数同样的,对于偶函数而言,我们起始于f(−x)=f(x)的假设,推导至一般情况的有效方法是:•将f(x)变为f(−x);•利用f(−x)=f(x)替代f(−x);•得到结果f(x)=f(−x)。
这说明,如果一个函数f(x)满足f(−x)=f(x),那么这个函数一定是偶函数。
无奇偶性的函数当一个函数f(x)既不是奇函数也不是偶函数时,表示我们无法通过f(x)和−f(x)的关系得到关于函数的更多信息。
《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。
不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。
一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。
2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。
3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。
二、教学内容1. 函数的基本概念。
2. 奇函数和偶函数的定义与性质。
3. 常见的奇偶函数及其图像。
三、教学过程1. 导入新课,激发学生的学习兴趣。
先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。
当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。
学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。
3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。
通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。
4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。
首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。
函数的奇偶性的说课稿一、说教材本文是高中数学课程中关于函数性质的一个重要部分,主要探讨函数的奇偶性。
函数的奇偶性是研究函数对称性质的基础,是数学中一种基本的函数分类方式。
它不仅在数学理论中占有重要地位,而且在实际应用中也有广泛的影响。
(1)作用与地位:函数的奇偶性是函数概念的重要组成部分,对于深化学生对函数性质的理解,培养学生的抽象思维能力具有重要意义。
此外,它也是后续学习积分、微分等高级数学知识的基础。
(2)主要内容:本文主要介绍了函数的奇偶性的定义、判定方法以及奇偶函数的性质。
具体包括:奇函数的定义、偶函数的定义、奇偶函数的性质和判定方法。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解函数奇偶性的定义,掌握判定函数奇偶性的方法;(2)能够判断给定函数的奇偶性,并运用奇偶函数的性质解决相关问题;(3)通过奇偶函数的学习,培养学生的抽象思维能力,提高学生的数学素养。
三、说教学重难点(1)教学重点:1. 函数奇偶性的定义;2. 判定函数奇偶性的方法;3. 奇偶函数的性质。
(2)教学难点:1. 理解奇偶函数的定义,尤其是抽象函数的奇偶性判定;2. 运用奇偶函数性质解决实际问题。
四、说教法为了让学生更好地理解和掌握函数的奇偶性,我设计了一系列的教学方法,旨在激发学生的兴趣,引导他们主动探究,以下是我计划采用的教学方法及亮点:1. 启发法:- 在引入函数奇偶性概念时,我会通过具体的图形示例,如正弦和余弦函数的图像,来启发学生观察和思考这些函数的对称特点。
- 通过提问“为什么这些函数图像会有这样的对称性?”来激发学生的好奇心,引导他们主动探索背后的数学原理。
2. 问答法:- 在讲解奇偶性的定义时,我会采用问答法,让学生回答“什么是奇函数?什么是偶函数?”等问题,通过学生的回答来澄清概念,并纠正理解上的误区。
- 通过对比不同学生的回答,突出正确理解和表达的重要性,同时也能够及时发现并解决学生的疑惑。
《函数的奇偶性》说课稿一.教材分析“函数奇偶性”是选自人教版高中数学必修第四章第三节的教学内容。
函数奇偶性是函数重要性质之一,函数奇偶性既是函数概念的延续和拓展,也是今后研究各种基本初等函数的基础。
这一节利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学的教学与学习当中。
从方法论的角度来看,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。
同时在生活及生产实际中有着广泛的应用,所以函数的奇偶性应重点研究。
二、学情分析:思维方面:高一学生已具有一定的形象思维能力,已能从直观的角度来认识一些简单的图形,但分析、归纳、抽象的思维能力还是比较薄弱,通过恰当的培养和引导能够使得学生的分析归纳能力得到提高。
知识方面:通过初中所学的对称图形以及对称的概念的学习,对函数定义域、值域的理解和学习,学生也基本掌握了从哪些方面来认识和学习函数,但是学生的分析归纳能力以及对事物本质的认识能力还比较弱,所以我们必须引导学生从“数”与“形”两个方面来加深对函数奇偶性本质的认识。
三.教学目标分析1.知识目标:了解奇函数与偶函数的概念。
2.能力目标:(1)能从数和形两个角度认识函数奇偶性。
(2)能运用定义判断函数的奇偶性。
3.情感目标:(1)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、从特殊到一般的数学思想。
(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度。
四、教法分析和学法分析1.教法分析《新课标》指出:“学生在整个教学活动中,始终是认识与发展的主体。
”遵循“教必须以学为基础”的原则,结合学生在形象思维能力及概括、理解能力上的差异,我选择的是“教师引导下的合作探究”的教学方法。
2.学法分析立足于学生已有的知识经验和认知发展的水平,在教师引导下积极参与充满合作、探索的学习过程,亲身经历概念的形成过程,充分发挥学生的动手参与实践的能力,使学生的学习过程成为在教师指导下的知识“再创造”过程。
函数的奇偶性(第一课时)教学设计一.教学目标1.知识目标:了解奇函数与偶函数的概念。
2.能力目标:(1)能从数和形两个角度认识函数奇偶性。
(2)能运用定义判断函数的奇偶性。
3.情感目标:(1)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、从特殊到一般的数学思想。
(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度。
二.教学重点、难点重点:对函数奇偶性概念的认识。
难点:1. 对函数奇偶性概念本质的认识。
2. 利用函数的奇偶性定义来判断函数奇偶性。
三.教学方法观察,归纳,启发探究相结合的教学方法。
四.教学过程(一)复习引入上节课我们研究了函数的单调性,今天我们将从对称的角度来研究函数的另一性质:函数的奇偶性。
对称同学们都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,引导学生回忆:问题1:什么样的图形是轴对称图形?什么样的图形是中心对称图形?问题2:你学过的函数中,哪些函数的图象是轴对称图形?哪些函数的图象是中心对称图形?(二)归纳探索、形成概念1.观察下列函数的图象:说明图象有什么样的特点?图象上运动的点的坐标之间有什么关系?①3)(x x f =(几何画板动态演示)问题3:你能说出什么是奇函数吗?2.得出奇函数、偶函数的定义及图形特征:(1)奇函数:如果对于函数)(x f y =的定义域D 内的任意一个x ,都有)()(x f x f -=-,则这个函数叫奇函数。
问题4:奇函数的图象具有什么样的对称性?奇函数的图象关于原点对称②2)(x x f =(几何画板动态演示)同学们可以自己通过类比得出偶函数的概念及图象性质。
(2)偶函数:如果对于函数)(x g y =的定义域D 内的任意一个x ,都有)()(x g x g =-,则这个函数叫偶函数。
偶函数的图象关于y 轴对称结论1:因此,函数的奇偶性,反映了函数图象在“整个”定义域上的“对称性”。
函数奇偶性一、教学内容分析函数的思想方法贯穿整个高中数学课程,函数的奇偶性是函数的重要性质之一,是对函数概念的深化,又是后续研究指数函数、对数函数、三角函数等内容的基础。
因此,对函数的奇偶性进行一个全面、准确的认识,并掌握好使用的技巧和方法,是非常必要的。
教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性。
二、学生情况分析:学生在初中已经学习过轴对称和中心对称图形,并且有了一定数量的简单函数的储备。
同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
另外,高一学生的思维能力正由具体形象向抽象理论转变,能够用假设、推理来思考和解决问题。
三、教学目标分析:1、知识与技能:使学生从形与数两方面理解函数奇偶性的概念,初步掌握利用函数图象和定义判断函数奇偶性的方法。
2、过程与方法:在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和从特殊到一般的数学思想方法。
3、情感态度与价值观:使学生体验数学的科学价值和应用价值,激发学习的兴趣,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
四、教学重难点分析:重点:函数奇偶性概念的理解及应用难点:函数奇偶性的判定及证明五、教学方法分析:我采用“启发式”、“探究式”教学方法,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,使之获得内心感受。
六、教学过程设计1.新课导入本环节我采用了“开门见山”的导入方法,用多媒体展示一组图片,使学生感受到生活中的对称美,激发了学生浓厚的学习兴趣,使学生的思维迅速定向。
再让学生观察几个特殊函数图象,达到了明确目标,突出重点的效果。
2.探索新知请同学们观察函数f(x)=2|x|和f(x)=x 的图象,提出问题:这两个函数图象有什么共同特征?相应的函数值对应表是如何体现这些特征的?教师总结并板书,再以具体数值为例,加以概括总结。
函数的奇偶性说课稿——获奖说课稿尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是函数的奇偶性。
这节课将从教学内容、教学目标、教学重难点、教学方法和教学过程五个方面来展开。
一、教学内容本节课主要学习函数的奇偶性,包括奇函数和偶函数的概念、性质及其应用。
二、教学目标1.掌握奇函数和偶函数的概念和性质;2.学会判断函数的奇偶性;3.能运用函数的奇偶性解决实际问题;4.培养学生的数学思维能力和创新意识。
三、教学重难点1.教学重点:掌握奇函数和偶函数的概念和性质,学会判断函数的奇偶性。
2.教学难点:运用函数的奇偶性解决实际问题,培养学生的数学思维能力和创新意识。
四、教学方法本节课将采用以下教学方法:1.直观演示法:通过实例演示,让学生直观地了解函数的奇偶性,加深对概念的理解。
2.讨论法:组织学生分组讨论,引导学生深入思考,自主解决问题。
3.讲练结合法:通过讲解例题,让学生了解如何运用函数的奇偶性解决实际问题。
4.类比法:通过比较不同类型函数的奇偶性,总结规律,培养学生的数学思维能力和创新意识。
五、教学过程本节课将分为以下五个环节展开:1.导入新课通过展示一些具有对称性的图片,引导学生思考对称性与数学的联系,进而引出函数的奇偶性这一主题。
这样的导入旨在激发学生的学习兴趣和探究欲望。
2.学习新课(1)概念引入通过具体实例的演示,让学生初步感知函数的奇偶性。
例如,展示一些中心对称和轴对称图形的函数图像,让学生了解具有这些对称性的函数的特点。
(2)奇函数和偶函数的概念定义:对于函数f(x),如果对于任意实数x,都有f(-x)=-f(x),则称f(x)为奇函数;如果对于任意实数x,都有f(-x)=f(x),则称f(x)为偶函数。
(3)性质介绍介绍奇函数和偶函数的一些基本性质,例如:奇函数的图像关于原点对称;偶函数的图像关于y轴对称等。
通过这些性质的介绍,让学生深入理解奇偶性的本质。
(4)判断函数的奇偶性学习如何判断一个函数的奇偶性。
函数的奇偶性的说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数的奇偶性”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“函数的奇偶性”是高中数学函数部分的重要内容,它不仅是对函数概念的深化和拓展,也是研究函数性质的重要工具。
函数的奇偶性反映了函数图像的对称性,对于后续学习函数的周期性、单调性以及解决函数相关的综合问题都具有重要的意义。
本节课在教材中的地位和作用主要体现在以下几个方面:1、承上启下:在学习函数奇偶性之前,学生已经掌握了函数的基本概念和一些常见函数的图像和性质,通过本节课的学习,可以将函数的图像特征与函数的表达式联系起来,进一步加深对函数的理解。
2、培养能力:函数奇偶性的研究过程中,需要学生运用观察、分析、归纳、推理等数学思维方法,有助于培养学生的逻辑思维能力和创新能力。
3、实际应用:函数的奇偶性在物理学、工程学、经济学等领域都有广泛的应用,通过学习可以让学生体会数学与实际生活的紧密联系,提高学生的应用意识。
二、学情分析授课对象是高一年级的学生,他们已经具备了一定的函数知识和数学思维能力,但对于抽象的数学概念和复杂的数学问题,理解和解决起来还存在一定的困难。
在学习本节课之前,学生已经学习了函数的概念、函数的图像以及一些基本初等函数的性质,对函数有了初步的认识。
但是,函数奇偶性的概念比较抽象,学生可能难以理解其本质内涵。
此外,学生在运用函数奇偶性的定义进行判断和证明时,可能会出现逻辑不严谨、步骤不规范等问题。
针对以上学情,在教学过程中,我将注重引导学生通过观察、思考、讨论等活动,自主探索函数奇偶性的概念和性质,同时加强对学生的思维训练和解题指导,帮助学生克服学习中的困难。
三、教学目标根据教材内容和学生的实际情况,我确定了以下教学目标:1、知识与技能目标(1)理解函数奇偶性的概念,能够根据函数奇偶性的定义判断函数的奇偶性。
1.3.2《函数的奇偶性》
人教A版实验教材高一数学
尊敬的各位专家评委、老师们:大家好!
今天我说的课是人教A版必修1第一章第3节第2课时“函数的奇偶性”。
我将从教材分析、教法和学法的分析、教学过程三个方面对本节课进行说明。
一、教材分析
1.教材所处的地位和作用
“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及
入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系
统地介绍了函数的奇偶性。
从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.
3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验x
f=
f
x
-或成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍f
=
-
-
)
)
(
)
x
(
f
)
(x
(
奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲
解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。
因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。
教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
从课堂反应看,基本上达到了预期效果。
2、学法
让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。
下面我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了“开门见山”导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。
再让学生观察几个特殊函数图象。
通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1 、2 数学中对称的形式也很多,这节课我们就以函数2)(x x f =和()f x =︱x ︱以
及x x f =)(和x
x f 1)(=为例展开探究。
这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y 轴(原点)对称。
接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们
具体化,再用数学符号表示。
借助课件演示(令
比较 得出等式
, 再令 ,得到 ) 让学生发现两个函数的对称
性反应到函数值上具有的特性,)()(x f x f =- ()()(x f x f -=-)然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。
最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三) 学生探索、领会定义
探究3 下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。
强调:函数具有奇偶性的前提条件是——定义域关于原点对称。
(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1判断下列函数的奇偶性
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:
(1) 先求定义域,看是否关于原点对称;
(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。
例2 判断下列函数的奇偶性:
例3 判断下列函数的奇偶性:
0)(=x f
例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?
例4(1)判断函数x x x f +=3)(的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y 轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。
通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)总结反馈
在以上课堂实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。
知识在于积累,而学习数学更在于知识的应用经验的积累。
所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
y 3[43]y x x ∈-=,,x
O 4
-32[32]
y x x ∈-=,,3-2x
O y
452(1)()(2)()11(3)()(4)()f x x f x x f x x f x x x
===+=x x x f +=2)(
选做题:课本第39页习题1.3A组第6题。
思考题:课本第39页习题1.3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
以上是我对教学设计的六个环节的简要说明。
作为一线教师,课改之路任重而道远,在此引用一句古人的诗句来与同行共勉:“路漫漫其修远兮,吾将上下而求索”。
非常感谢各位的关注!谢谢!。