无机粉体表面改性的目的、原理及方法及改性剂的选择
- 格式:pdf
- 大小:68.26 KB
- 文档页数:1
玻璃微珠改性技术方法大全以及粉体表面改性剂的作用空心玻璃微珠是由纳硅硼酸盐材料经特殊工艺制成的薄壁、封闭的微小球体,球体内部包裹一定量的气体,其主要成分为硅酸盐,具有良好的综合性能,耐高温,耐腐蚀、防辐射、密度小、低导热率、高绝缘度、热稳定性好、化学稳定性好等,作为复合材料的填料使用,能降低基体密度,提高基体的刚度、强度、绝缘性、尺寸稳定性等。
广泛应用于建材、塑料、橡胶、涂料、航海和航天等领域。
玻璃微珠表面改性技术表面改性是优化玻璃微珠等无机粉体材料性能的关键技术之一,对提高材料的应用性能和价值起着至关重要的作用,主要方法有:表面化学改性、表面包覆改性、高性能表面改性及机械力化学改性。
(1)表面化学改性所谓表面化学改性是指通过表面改性剂与颗粒表面之间的化学吸附作用或者化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。
表面化学改性方法是目前最常用的表面改性方法,在玻璃微珠等无机粉体材料表面改性技术中占有及其重要的地位。
(2)表面包覆改性表面包覆改性是利用无机物或有机物对无机粒子表面进行涂覆/涂层以达到改性的方法,包覆物理涂覆、化学包覆及简单化学反应或沉淀现象进行包覆。
化学包覆是利用官能团反应、游离基反应、溶胶吸附等对无机粉体进行表面包覆改性,从而改善其在高分子聚合物的分散性、相容性等,让其具有更广的使用价值。
物理涂覆是利用表面活性剂、水溶性或者油溶性高分子化合物等对粉体表面进行覆膜处理来达到表面改性的目的,进而改善无机粉体的胶结能力、强度、耐温能力等。
(3)高能表面改性高能表面改名是指利用紫外线、红外线、电晕放电、等离子提照射和电子束辐射等办法对粉体进行表面处理的方法。
(4)机械力化学改性机械力化学改性是利用粉体超细粉碎及其他强烈机械力作用有目的的激活颗粒表面,使其结构复杂或表面无定型化,从而增加其与有机物或其它无机物的反应活性。
机械力化学改性有两层含义:(1)利用矿物超细粉碎规程中机械应力的作用激活矿物表面,使表面晶体结果与物理化学性质发生变化,从而实现应用需要。
粉体改性剂对滑石粉表面改性方法及作用滑石粉是一种层状含水镁硅酸盐,其表面含有亲水基团,且具有较高的表面能,作为无机填料与有机高聚物分子材料之间在化学结构和物理形态上有着很大的差异,缺少亲和性,使之滑石粉与聚合物之间混合不均匀、粘合力弱,导致制品的力学性能降低。
为此,必须对滑石粉进行表面改性处理。
滑石粉表面改性的机理是利用某些带有两性基团的小分子或高分子化合物对进行复合的物质中的一种或两种进行表面改性,使其表面由憎水变为亲水,目的是使两种物质与树脂更好地相结合。
1、表面覆盖改性法表面覆盖改性法是将表面活性剂或粉体改性剂覆盖于粒子表面,使表面活性剂或粉体改性剂以吸附或化学键的方式与粒子表面结合,使粒子表面由亲水变为疏水,赋予粒子新的性质,使粒子与聚合物的相容性得以改善。
该方法是目前最普遍采用的方法。
大致可理解为:针对滑石粉与聚合物亲和力不高的缺点,将带有两性基团的表面活性剂覆盖粒子上,亲水基团朝向粒子表面,亲油基团朝向外面,这样与聚合物结合时就有好的相容性,达到改性目的,扩大滑石粉的应用范围。
2、机械化学法机械化学法是通过粉碎、摩擦等方法将比较大的粒子变得较小,使粒子的表面活性变大,即增强其表面吸附能力,简化工艺的同时还可以降低成本,同时更易控制产品的质量。
超细粉碎是物料深加工的重要手段,其主要目的是为现代工业提供高性能的粉体产品。
此过程不是简单的物料粒度减小,它包含了许多复杂的粉体物质性质和结构的变化、机械化学变化。
滑石粉经搅拌磨超细粉碎后,表面活性增强,热效应改善,白度提高,粉体性质变化与超细粉碎过程的热力学特性密切相关。
3、外膜层改性法外膜层改性是在粒子表面均匀地包覆一层聚合物,从而赋予粒子表面新的性质。
用澳达粉体表面改性剂对无机粒子滑石粉进行表面处理,与常规的滑石粉粒子填充物相比,包覆后的滑石粉填充高分子材料后,其最大拉伸强度、冲击强度均明显提高,提高率分别达到136%和162%,可作为新型强韧型填充改性剂用于PVC电缆料。
无机粉体(CaCO3)的聚合物胶囊化改性一、实验目的1、了解无机粉体的聚合物胶囊化过程;2、认识聚合物对无机粉体表面的改性作用;3、熟悉并掌握粘度计的使用方法。
二、实验原理采用物理或化学方法对粉体颗粒进行表面处理,有目的地改变其表面物理化学性质的工艺,称为粉体表面改性。
其目的是为了增强粉体与基体的界面相容性,从而提高复合材料的力学等各种性能。
矿物等粉体的表面改性方法有多种不同的分类。
根据改性性质的不同分为物理方法,化学方法和包覆方法;综合改性作用的性质、手段和目的,分为包覆法、沉淀反应法、表面化学法、接枝法和机械化学法。
包覆处理改性是利用无机物或有机物(主要是表面活性剂,水溶性或油溶性高分子化合物及脂肪酸皂等)对矿粒表面进行包覆以达到改性的方法,也包括利用吸附、附着及简单化学反应或沉积现象进行的包膜。
利用化学反应并将生成物沉积在矿粒表面形成一层或多层“改性层”的方法称为沉淀反应改性。
表面化学改性通过表面改性剂与颗粒表面进行化学反应或化学吸附的方式完成。
机械力化学改性是在矿物超细粉碎的同时实施表面化学改性,利用粉体机械力效应,可促进和强化改性效果,其实质是表面化学等改性方法的促进手段。
利用紫外线、红外线、电晕放电和等离子体等方法进行矿物等粉体表面改性的方法称为高能处理改性。
高能处理改性一般作为激发手段用于单体烯烃或聚烯烃在矿物颗粒表面的接枝改性。
如玻璃纤维和?-AL2O3等无机粉体经?-射线照射,可实现聚乙烯等单体在其表面的接枝聚合。
胶囊化改性是在颗粒表面覆盖均质而且有一定厚度薄膜的一种表面改性方法,如采用in suit聚合法可制成聚甲基丙烯酸甲酯包覆的钛白粉胶囊改性体。
在胶囊化改性工艺中,一般称内藏物为芯物质或核物质(Core material),包膜物为膜物质(Wall material)。
胶囊的作用是控制芯物质的放出条件,即控制制造胶囊的条件以调节芯物的溶解、挥发、发色、混合以及反应时间;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。
表面改性原理
表面改性是一种通过在材料表面引入新的物质或改变材料表面结构,从而改变其性质和功能的方法。
其主要目的是提高材料的性能,例如增加材料的化学稳定性、耐磨性、耐腐蚀性或增强材料的粘附能力等。
表面改性可以通过多种方法实现,包括化学方法、物理方法和生物方法等。
化学方法中常用的表面改性技术包括溶液处理、电沉积和化学气相沉积等。
溶液处理是将材料浸泡在含有特定化学物质的溶液中,使化学物质与材料表面发生反应,形成新的物质层。
电沉积是利用电解作用,在材料表面沉积一层新的金属或化合物。
化学气相沉积则是将特定气体在高温条件下与材料表面反应,生成新的表面物质。
物理方法中常用的表面改性技术包括离子注入、磁控溅射和激光处理等。
离子注入是将高能离子轰击材料表面,使离子能量转化为材料表面的热能,从而改变表面结构和性质。
磁控溅射是利用磁场控制金属靶材上的离子,将其沉积在材料表面形成薄膜。
激光处理则是利用激光束对材料表面进行表面熔化或表面重结晶,改变材料的组织和性质。
生物方法中常用的表面改性技术包括生物功能化修饰和生物分子固定化等。
生物功能化修饰是将生物大分子或生物活性物质修饰在材料表面,从而赋予材料特定的生物功能,如抗菌、抗炎或细胞黏附等。
生物分子固定化是将特定的生物分子固定在材料表面,用于生物传感、靶向治疗等应用。
总之,表面改性是一种有效的方法,在不改变材料体积和内部结构的情况下,对材料表面进行改变,从而获得新的表面性能和功能。
这些技术在材料科学和工程领域中具有广泛的应用前景。
无机粉体颗粒表面改性技术在提高燃料的燃烧效率方面的应用1研究背景无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。
无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。
因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。
2无机粉体颗粒表面改性的方法表面改性是用物理、化学或机械的方法对粉体表面进行处理,根据应用需要有目的的改变粉体表面的物理化学性质,使其表面性质发生变化,以满足材料、工艺或技术发展的需要。
2.1 物理涂覆改性物理涂覆改性即表面包覆改性,当无机粉体和改性剂按照一定比例混合时,由于搅拌的作用,改性剂通过静电引力或范德华力吸附在粉体表面,从而形成单层或多层包覆。
与化学包覆改性不同的是,改性后改性剂与粒子表面无化学反应。
由于包覆层的存在,粒子间产生了空间位阻斥力,对其再团聚起到了减弱或屏蔽的作用。
该法几乎适用于所有无机粉体的表面改性。
用于物理涂覆改性的改性剂主要有表面活性剂、超分散剂等[2]。
无机粉体经过物理涂覆后,其分散性、与有机体的相容性均显著提高[3]。
2.2 化学包覆改性化学包覆改性是指通过一定的技术手段,利用改性剂分子中的官能团和粉体表面进行化学反应或化学吸附,从而包裹在无机粉体的表面。
化学包覆方法是最常用的改性方法,一般采用湿法工艺。
具体方法有多种。
如溶胶-凝胶法,此法不仅可以用于超细粉体的包覆,还可以用于制备超细粉体;非均相凝聚法是先加入分散剂将两种物质分散,通过调节pH值或加入表面活性剂等使包覆颗粒和被包覆颗粒所带的电荷相反,然后通过静电引力形成单层包覆;表面接枝聚合包覆法是通过化学反应将高分子材料连接到无机粒子表面上,该法的特点是最终接枝包覆在改性主体的聚合物改性剂是在改性过程中同时合成的。
一粉体表面改性概念粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。
二表面改性的目的(1)改善粉体颗粒的分散性、稳定性和相容性。
(2)提高粉体颗粒的化学稳定性,如耐药性、耐光性、耐候性等。
(3)改变粉体的物理性质,如光学效应、机械强度等。
(4)出于环保和安全生产目的。
三粉体表面改性技术的应用•(1)有机/无机复合材料(塑料、橡胶等)•改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能•(2)油漆、涂料•提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等•(3)无机/无机复合材料•提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料•(4)吸附与催化材料•提高选择性、活性和机械强度•(5)健康与环境保护•(6)超细和纳米粉体制备中的抗团聚•(7) 其它(插层改性)四粉体表面改性的主要研究内容•(1)粉体表面改性的原理和方法•表面或界面性质与其应用性能的关系•表面或界面与表面改性剂或处理剂的作用机理和作用模型•各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等•(2)表面改性剂及其配方•种类、结构、分子量、活性基团与其应用性能或功能的关系•与粉体表面及复合材料的作用机理和作用模型•用量和使用方法•新型和专用表面改性剂的制备或合成•(3)表面改性工艺与设备•不同种类和不同用途粉体表面改性的工艺流程和工艺条件•不同种类和不同用途粉体的表面改性配方•影响表面改性效果的因素•高性能和专用改性设备的研制开发•(4)过程控制与产品表征与检测技术•过程温度、浓度、酸度、时间及表面改性剂用量、表面包覆率或包膜厚度等监控技术•表面改性产品的表征与检测(直接检测和表征)方法及仪器;•控制参数与指标之间的对应关系及过程的智能化控制等。
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。