无机粉体表面改性方法综述
- 格式:pdf
- 大小:212.20 KB
- 文档页数:5
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
国内外无机粉体表面改性的现状朱宗臣,胡彩平,王佳涛,吴浩(昆明理工大学材料科学与工程学院,云南昆明650093)摘要:表面改性是无机粉体的主要加工技术之一,对提高分体的应用性能及应用价值有着至关重要的作用。
从粉体表面改性方法、工艺、设备、表面改性剂及其配方等方面综述了无机粉体表面改性技术现状。
关键词:无机粉体;表面改性;表面改性剂1 表面改性方法根据表面改性剂和粉体粒子之间有没有发生化学反应,可将无机粉体表面改性方法分为表面物理改性法、表面化学改性法和复合改性。
1.1 表面物理改性法所谓表面物理改性法就是通过分子间作用力(如范德华力,氢键等)将无机或有机表面改性剂吸附到无机粉体粒子表面,在粉体粒子表面形成包覆层,以降低粉体的表面张力,改变粉体粒子的表面极性,减少粉体粒子之间的团聚作用,从而达到均匀稳定分散粉体粒子的目的。
(1)物理涂覆物理涂覆是一种对无机粉体粒子表面进行简单改性的工艺方法。
它主要利用表面活性剂、水溶性或者油溶性高分子化合物及脂肪酸等对粉体表面进行覆膜处理而达到表面改性的目的。
经过覆膜以后,无机粉体的胶结能力、强度、耐高温能力等均有明显改善。
(2)表面活性剂改性表面活性剂改性包含疏水基和亲水基,是极少数能显著改变物质表面或界面性质的物质,具有两个基本特点:(1)在物质表面或两相界面容易定向排列,使其表面性质或界面性质发生显著变化;(2)在溶液中的溶解度很低,在通常使用浓度范围内大部分以胶团(缔合体)状态存在,使其表面张力显著下降。
(3)高能表面改性利用紫外线、红外线、电晕放电和等离子体照射等方法对无机粉体进行表面处理的方法称为高能表面改性。
(4)胶囊化改性胶囊化改性是现代医药领域最先采用的技术,最初是由为了满足药品的缓释性需求而出现的固体药粉胶囊化发展而来的。
胶囊化改性是粉体颗粒表面上覆盖均质而且有一定厚度的薄膜,它的特点是能够将液滴固体化。
1.1 表面化学改性所谓无机粉体表面化学改性是指通过无机粉体粒子表面和表面改性之间的化学吸附作用或化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。
粉体表面改性方法原理、工艺技术及使用的粉体改性剂无机粉体的表面改性是根据使用行业所需求粉体具备的性能而进行的对应表面改性,以满足现代新材料、工艺和技术的发展需求,提升原有产品的性能特点,而且还可以提升对应的产能以及生产效率,在粉体加工行业也越来越受到重视,目前无机粉体表面改性的方法主要为6大类。
1、方法一:物理涂覆方法原理:利用高聚物或树脂等对粉体表面进行处理,一般包括冷法和热法两种。
粉体改性剂:高聚物、酚醛树脂、呋喃树脂等。
影响因素:颗粒形状、比表面积、孔隙率、涂敷剂的种类及用量、涂敷处理工艺等。
适用粉体:铸造砂、石英砂等。
2、方法二:化学包覆方法原理:利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆,一般包括干法和湿法两种。
除利用表面官能团改性外,该方法还包括利用游离基反应、鳌合反应、溶胶吸附等进行表面包覆改性。
粉体改性剂:如硅烷、钛酸酯、铝酸酯、锆铝酸盐、有机铬等各种偶联剂,高级脂肪酸及其盐,有机铵盐及其他各种类型表面活性剂,磷酸酯,不饱和有机酸,水溶性有机高聚物等。
影响因素:粉体的表面性质,粉体改性剂种类、用量和使用方法,改性工艺,改性设备等。
适用粉体:石英砂、硅微粉、碳酸钙、高岭土、滑石、膨润土、重晶石、硅灰石、云母、硅藻土、水镁石、硫酸钡、白云石、钛白粉、氢氧化铝、氢氧化镁、氧化铝等各类粉体。
3、沉淀反应方法原理:通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包膜”,以达到改善粉体表面性质,如光泽、着色力、遮盖力、保色性、耐候性、电、磁、热性和体相性质等。
粉体改性剂:金属氧化物、氢氧化物及其盐类等各类无机化合物。
影响因素:原料的性质(粒度大小和形状、表面官能团),无机表面改性剂的品种,浆液的pH值、浓度,反应温度和反应时间,洗涤、脱水、干燥或焙烧等后续处理工序。
适用粉体:钛白粉、珠光云母、氧化铝等无机颜料。
4、机械力化学方法原理:利用超细粉碎及其他强烈机械作用,有目的的对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构、溶解性能(表面无定形化)、化学吸附和反应活性(增加表面活性点或活性基团)等。
无机材料的表面改性及其应用无机材料是指那些不包含碳元素的材料,例如金属、陶瓷和玻璃等。
无机材料的表面改性对于提升其性能和应用具有重要意义。
本文将介绍无机材料表面改性的一些方法及其应用。
一、表面涂层无机材料表面涂层是一种常见的表面改性方法,它可以增强无机材料的抗腐蚀、耐磨损和导电性等性能。
例如,对于金属材料,常见的表面涂层有电镀、喷涂、镀膜等方法。
对于陶瓷材料,常用的涂层方法有化学气相沉积和物理气相沉积等方法。
表面涂层不仅可以提升材料的性能,还可以给材料带来新的功能。
例如,将金属材料表面涂层改为防护膜,可以使其具有抵御外界侵蚀的能力;将陶瓷涂层改为热敏涂层,则可以使其具有感应温度变化的功能。
二、表面改性覆盖层除了表面涂层外,还存在一种无机材料表面改性方法,即表面改性覆盖层。
该方法通过在材料表面形成一层改性层,从而改变其表面性质和性能。
常见的表面改性覆盖层有氧化层、氟碳覆盖层、二氧化硅覆盖层等。
表面改性覆盖层在工业生产中有广泛应用。
例如,对于金属表面的覆盖层,可以起到保护内部材料的作用;对于陶瓷表面的覆盖层,可以提升其机械强度和硬度。
三、表面等离子体处理表面等离子体处理是一种将材料暴露在高能量等离子体中,从而在材料表面形成新的物理和化学性质的表面改性方法。
其优点在于处理过程不会对材料进行物理和化学改变。
同时,它还可以改善材料的粘合力,增强材料的表面张力等,具有特殊的应用前景。
四、表面纳米材料添加表面纳米材料添加是指将纳米颗粒添加到无机材料表面,以改善其性能和加工性能。
例如,将二氧化硅纳米颗粒添加到陶瓷材料表面,可以显著提升其硬度和抗磨性能。
同时,在材料加工过程中,表面纳米材料添加可以减少其摩擦系数,使其易于加工。
五、表面化学处理表面化学处理是一种通过化学反应来改变无机材料表面化学性质和结构的表面改性方法。
例如,在金属表面进行化学反应可以形成化学膜,从而增加金属表面的抗腐蚀性能。
在陶瓷表面进行化学处理,则可以形成新的结构和组成,从而改变其物理性质。
无机粉体表面改性方法综述唐亚峰(南华大学化学化工学院无机非金属材料系湖南衡阳)摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。
改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。
本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。
关键词:无机粉体;表面改性;改性方法;新型方法;前言无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。
无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。
无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。
因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。
本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。
最后对无机粉体表面改性方法进行了展望。
1 无机粉体表面改性的机理由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。
无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。
粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。
摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。
本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。
关键词: 纳米粉体; 团聚; 表面改性;表征Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification.Key words: nanosizes power, accumulation, surface modification,manifetation1、引言物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。
由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。
目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。
但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。
2、纳米粒子的团聚所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。
中国无机粉体表面改性技术发展现状郑水林(中国矿业大学北京校区北京 100083)摘要:目前应用的表面改性工业主要有干法工艺、湿发工业、复合工艺三大类;表面改性设备部分是从化工、塑料、粉碎、分散等行业中引用过来的,专用粉体表面改性设备的开发始于20世纪90年代后期;表面改性剂主要有偶联剂、表面活性剂、有机低聚物、不饱和有机酸、有机硅、水溶性高分子以及金属氧化物及其盐等;表征技术有直接表征和对表面改性粉体应用性能的表征两种。
本文综述了中国无机粉体表面改性技术的现状并对其主要发展趋势进行了分析和展望。
关键词:无机粉体表面改性改性剂改性机前言以硅酸盐、碳酸盐、硫酸盐、氧化物、氢氧化物、碳化物等为主要成分的无机粉体及其复合无机粉体是一类在现代工业、农业、建筑、交通运输、航空航天、环保等领域得到广泛应用的新材料。
这类新型无机粉体材料除了粒度微细且分布合理外,另一个重要特征是表面性质依用途不同进行了表面改性或优化处理,其目的是改善粉体的应用性能,如提高无机粉体的分散性、与复合材料中基料的相容性、改善材料的电性、热性、光性、耐侯性、化学稳定性以及改善复合材料的力学性能等【1】。
在复合材料迅速发展的现代社会,作为复合材料填料的无机粉体已逐渐成为复合材料不可或缺的重要组成部分。
无论是有机/无机复合材料还是无机/无机复合材料,粉体的表面特性,特别是超细粉体和纳米粉体的表面特性,是影响材料性能的关键因素之一。
其它诸如涂料或涂层材料吸附与催化材料等,粉体的表面性质都是决定其材料性能的关键因素之一。
正因为如此,粉体表面改性或表面处理技术已成为粉体加工技术的重要组成部分之一。
中国在这一领域虽然起步较晚,但近二十年来,尤其是近十年来,也有了较快发展【2】。
表面改性技术的主要组成部分是表面改性工艺、设备、表面改性剂及其配方、应用和表征技术等几方面,本文以工业化表面改性或表面处理技术为基点,简要回顾总结我过无机粉体表面改性技术的发展现状及其发展趋势。
一文了解粉体表面改性技术
超细粉体具有常规材料难以比拟的优异性能,在先进陶瓷、微电子、航天航空、生物制药、光学检测等领域获得了广泛的应用,但由于稳定性低、易发生团聚和难于分散,需要对超细粉体进行适当的表面处理以改善颗粒的表面特性和提高其分散性能,达到应用要求。
一、粉体表面改性方法
粉体表面改性方法是指改变非金属矿物粉体表面或界面的物理化学性质的方法,主要有表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等。
目前工业上粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法、机械化学改性法和复合法。
1、表面化学包覆改性法
表面化学包覆改性法是目前最常用的粉体表面改性方法,是利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性。
改性工艺可分为干法和湿法两种。
SiO2粉体颗粒表面改性示意图
所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等)。
2、沉淀反应法
沉淀反应法是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方。