数值分析典型例题
- 格式:docx
- 大小:180.81 KB
- 文档页数:13
数值分析经典例题1.y' = y , x [0,1] ,y (0) =1 , h = 0.1。
1求解析解。
2 Eular法3 R-K法○1解析法在MATLAB命令窗口执行clear>> x=0:0.1:1;>> y=exp(x);>> c=[y]'c =1.0000000000000001.1051709180756481.2214027581601701.3498588075760031.4918246976412701.6487212707001281.8221188003905092.0137527074704772.2255409284924682.4596031111569502.718281828459046○2Euler法在Matlab中建立M文件如下:function [x,y]=euler1(dyfun,xspan,y0,h)x=xspan(1):h:xspan(2);y(1)=y0;for n=1:length(x)-1y(n+1)=y(n)+h*feval(dyfun,x(n),y(n));endx=x';y=y'在MATLAB命令窗口执行clear>> dyfun=inline('y+0*x');>> [x,y]=euler1(dyfun,[0,1],1,0.1);>> [x,y]得到ans =0 1.0000000000000000.100000000000000 1.1000000000000000.200000000000000 1.2100000000000000.300000000000000 1.3310000000000000.400000000000000 1.4641000000000000.500000000000000 1.6105100000000000.600000000000000 1.7715610000000000.700000000000000 1.9487171000000000.800000000000000 2.1435888100000000.900000000000000 2.3579476910000001.0000000000000002.593742460100000○3R-K法(龙格-库塔法)在本题求解中,采用经典4阶龙格-库塔法首先在Matlab的M文件窗口对4阶龙格-库塔算法进行编程:function [x,y]=RungKutta41(dyfun,x0,y0,h,N)x=zeros(1,N+1);y=zeros(1,N+1);x(1)=x0;y(1)=y0;for n=1:Nx(n+1)=x(n)+h;k1=h*feval(dyfun,x(n),y(n));k2=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k1);k3=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k2);k4=h*feval(dyfun,x(n+1)+h,y(n)+k3);y(n+1)=y(n)+(k1+2*k2+2*k3+k4)/6;end在MATLAB命令窗口执行clear>> dyfun=inline('y','x','y');>> [x,y]=RungKutta41(dyfun,0,1,0.1,10);>> c=[x;y]'得到c =0 1.0000000000000000.100000000000000 1.1051708333333330.200000000000000 1.2214025708506950.300000000000000 1.3498584970625380.400000000000000 1.4918242400806860.500000000000000 1.6487206385968380.600000000000000 1.8221179620919330.700000000000000 2.0137516265967770.800000000000000 2.2255395632923150.900000000000000 2.4596014137800711.0000000000000002.718279744135166 ○4绘图'解析法','Euler法','R-K法' 绘制如下在MATLAB命令窗口执行clear>> x=0:0.1:1;>> y1=exp(x);>> dyfun=inline('y+0*x');>> [x,y2]=euler1(dyfun,[0,1],1,0.1);>> dyfun=inline('y','x','y');>> [x,y3]=RungKutta41(dyfun,0,1,0.1,10);>> plot(x,y1,'*')hold onplot(x,y2,'g','LineWidth',2)plot(x,y3,'b','LineWidth',2)legend('解析法','Euler法','R-K法')2.一个具有1400kg初始重量的小火箭,带有1040kg的燃料,点燃后垂直向上运动,火箭内的燃料以18kg/s的速率燃烧,提供31000N的推力。
1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。
236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。
注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。
例2 指出下列各数具有几位有效数字。
2.0004, -0.00200, -9000, 9310⨯,2310-⨯。
解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。
解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。
例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。
解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。
但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。
第 1 页/共 22 页1. 正方形的边长大约为100cm ,应怎样测量才干使面积误差不超过1cm 22. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m,1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.3.为使π的相对误差小于0.001%,至少应取几位有效数字?4.设x的相对误差界为δ,求n x的相对误差界.5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?第 3 页/共 22 页6. 已知333487.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并预计截断误差.7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并预计误差.8. 已知16243sin ,sin πππ===请用抛物插值求sin50的值,并预计误差9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x第 5 页/共 22 页10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式.11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,试用二次牛顿插值多项式计算(2.15)f 的近似值,并研究其误差12. 设],[)(b a x f 在上有四阶延续导数,试求满意条件)2,1,0()()(==i x f x P i i 及)()(11x f x P '='的插值多项式及其余项表达式.13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944⎡⎤⎢⎥⎣⎦,上的三次埃尔米特插值多项式()P x ,使它满意11()()(0,1,2),()(),i i P x f x i P x f x ''===并写出余项第 7 页/共 22 页表达式.14. 设],1,0[,23)(2∈++=x x x x f 试求)(x f 在]1,0[上关于,,1{,1)(x span x =Φ=ρ}2x 的最佳平方逼近多项式15.已知实验数据如下:用最小二乘法求形如y=a+bx2的拟合曲线,并计算均方误差.16.已知数据表如下第 9 页/共 22 页x i 1 2 3 4 5 y iωi4 4.56 8 8.5 2 1 3 1 1试用最小二乘法求多项式曲线与此数据组拟合17. .1)(},1{span ,1]41[)(的最佳平方逼近多项式中的关于上的在在求==Φ=x x x x f ρ18. 决定求积公式⎰++≈10110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A , 使其代数精度尽量高,并指出所决定的求积公式的代数精度.19. 用复化辛普森公式计算积分⎰=10dx e I x , 问区间[0,1]应分多少等分才干使截断误差不超过?10215-⨯第 11 页/共 22 页20. 利用下表中给出的数据,分离用复化梯形公式和复化辛甫生公式计算定积分dx x I ln 21⎰=的近似值(要求结果保留到小数点后六位)21. 用复化梯形公式和复化辛甫生公式计算积分⎰=6.28.1)(dx x f I ,函数)(x f 在某些节点上的值如下图:(本题共14分)22. 决定公式⎰+≈101100)()()(x f A x f A dx x f x 的系数1010,,,x x A A ,使其具有最高代数精度23. 决定求积公式⎰++≈1110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A ,使其代数精度尽量高,并指出所决定的求积公式的代数精度第 13 页/共 22 页24.用LU 分解法求解以下方程组 (10分)123123142521831520x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭25.用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛8892121514131615141321x x x26. 用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛542631531321321x x x27. 设方程组b Ax =,其中⎪⎪⎪⎭⎫⎝⎛-=220122101A ,Tb ⎪⎭⎫ ⎝⎛-=32,31,21, 已知它有解Tx ⎪⎭⎫⎝⎛-=0,31,21,若右端有小扰动61021-∞⨯=bδ,试预计由此引起的解的相对误差.第 15 页/共 22 页28. 设方程组b Ax =,其中212 1.0001A -⎛⎫= ⎪-⎝⎭,11.0001b -⎛⎫= ⎪⎝⎭,当右端向量b 有误差00.0001δ⎛⎫= ⎪⎝⎭b 时,试预计由此引起的解的相对误差(用∞范数计算)29. 给定b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111a a a a a a A 证实:(1) 当121<<-a 时,A 对称正定,从而GS 法收敛. (2) 惟独当2121<<-a 时,J 法收敛.30. 对于线性方程组⎪⎩⎪⎨⎧-=+-=-+=+1242043 16343232121x x x x x x x ,列出求解此方程组的Jacobi 迭代格式,并判断是否收敛。
2010.1%-1要使的近似值的相对误差限小于,要取几例位有效数字?*111331110220 4.4,4,4,0.12510100.1%2040.1%n r r n a a n εε-+*--≤⨯===≤⨯<= 解:设取位有效数字,有定理,。
由于知故只要取就有即只要对的近似值取位有效数字,其相对误差限就小于。
220530010,-V V R I =±=±Ω若电压,电阻求电流并计算其误差限及相对例12误差限。
22200.7333() 300()()()2201030050.0411()900000.73330.0411()0.0411()6%0.7333r I A V R R V I R A I A I εεεε************==+≈⨯+⨯===±==解:()所以=110 m -0.2 -0.1 -3l l l l m d d m s ld **≤≤=已测得某场地长的值为 ,宽d =80m,已知,。
试求面积的绝对误差限与相对例1误差限。
2()()()110(0.1)80(0.2)27()()()()270.31%8800rs l d d l m s s s sl d εεεεεε*****************≈+=⨯+⨯===≈=解:*** 0ln 1 ln -ln 1-4(-), (ln )() (ln(x ))r x x x x x x x xe x e x δδεδ***>≈≈≤≈设,的相对误差为,求的误差。
解:即有进而有例。
11111100(0,1,)(1,2,)-1n x n n x I ex e dx n I I nI n I ee dx e ----===-===-⎰⎰计算并估计误差。
解:分部积分公式例15值不稳定的。
)是数式(倍误差。
它表明计算公的就是有误差这说明)(易得满足关系算的误差计算结果表明,各步计方法一分析:)(法一:时当初值取为A n!,,!1),,2,1( ),2,1(10.6321A 0.63210n 000n11n 000E I E I E n E n nE E I I E n I n I I I I n n n n n n n -==-=-=⎩⎨⎧=-===≈-- 9991000.0684.20.0684B (9,8,)1(1)1,n!!n n n n n n n I I I n I I n E I I E E E E n ***-******≈=⎧=⎪=⎨=-⎪⎩=-=当初值取为 (计算方法见书式(3))时法二:()方法二分析:计算结果表明,各步计算的误差满足关系易得这说明比缩小了倍。
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
第一章绪论习题一1.设x>0,x的相对误差为δ,求fx=ln x的误差限;解:求lnx的误差极限就是求fx=lnx的误差限,由公式1.2.4有已知x的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限;解:直接根据定义和式1.2.21.2.3则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确12解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式;124.近似数x=0.0310,是 3 位有数数字;5.计算取,利用:式计算误差最小;四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计5.8;线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少解:用误差估计式5.8,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f0.23的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式5.14当n=3时得Newton均差插值多项式N3x=1.0067x+0.08367xx-0.2+0.17400xx-0.2x-0.3由此可得f0.23 N30.23=0.23203由余项表达式5.15可得由于7. 给定fx=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式5.17得其中计算时用Newton后插公式5.18误差估计由公式5.19得这里仍为0.5658.求一个次数不高于四次的多项式px,使它满足解:这种题目可以有很多方法去做,但应以简单为宜;此处可先造使它满足,显然,再令px=x22-x+Ax2x-12由p2=1求出A= ,于是9. 令称为第二类Chebyshev多项式,试求的表达式,并证明是-1,1上带权的正交多项式序列;解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数法方程为解得最小二乘拟合曲线为均方程为11. 填空题1 满足条件的插值多项式px=.2 ,则f1,2,3,4=,f1,2,3,4,5=.3 设为互异节点,为对应的四次插值基函数,则=,=.4 设是区间0,1上权函数为ρx=x的最高项系数为1的正交多项式序列,其中,则=,=答:1234第4章数值积分与数值微分习题41. 分别用复合梯形公式及复合Simpson公式计算下列积分.解本题只要根据复合梯形公式6.11及复合Simpson公式6.13直接计算即可;对,取n=8,在分点处计算fx的值构造函数表;按式6.11求出,按式 6.13求得,积分2. 用Simpson公式求积分,并估计误差解:直接用Simpson公式6.7得由6.8式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.123解:本题直接利用求积公式精确度定义,则可突出求积公式的参数;1令代入公式两端并使其相等,得解此方程组得,于是有再令,得故求积公式具有3次代数精确度;2令代入公式两端使其相等,得解出得而对不准确成立,故求积公式具有3次代数精确度; 3令代入公式精确成立,得解得,得求积公式对故求积公式具有2次代数精确度;4. 计算积分,若用复合Simpson公式要使误差不超过,问区间要分为多少等分若改用复合梯形公式达到同样精确度,区间应分为多少等分解:由Simpson公式余项及得即,取n=6,即区间分为12等分可使误差不超过对梯形公式同样,由余项公式得即取n=255才更使复合梯形公式误差不超过5. 用Romberg求积算法求积分,取解:本题只要对积分使用Romberg算法6.20,计算到K =3,结果如下表所示;于是积分,积分准确值为0.7132726.用三点Gauss-Legendre求积公式计算积分.7.解:本题直接应用三点Gauss公式计算即可;由于区间为,所以先做变换于是本题精确值8.用三点Gauss-Chebyshev求积公式计算积分解:本题直接用Gauss-Chebyshev求积公式计算即于是,因n=2,即为三点公式,于是,即故8. 试确定常数A,B,C,及α,使求积公式有尽可能高的代数精确度,并指出所得求积公式的代数精确度是多少.它是否为Gauss型的求积公式解:本题仍可根据代数精确度定义确定参数满足的方程,令对公式精确成立,得到由24得A=C,这两个方程不独立;故可令,得5由35解得,代入1得则有求积公式令公式精确成立,故求积公式具有5次代数精确度;三点求积公式最高代数精确度为5次,故它是Gauss型的;第五章解线性方程组的直接法习题五1. 用Gauss消去法求解下列方程组.解本题是Gauss消去法解具体方程组,只要直接用消元公式及回代公式直接计算即可;故2. 用列主元消去法求解方程组并求出系数矩阵A的行列式detA的值解:先选列主元,2行与1行交换得消元3行与2行交换消元回代得解行列式得3. 用Doolittle分解法求的解.解:由矩阵乘法得再由求得由解得4. 下述矩阵能否作Doolittle分解,若能分解,分解式是否唯一解:A中,若A能分解,一步分解后,,相互矛盾,故A不能分解,但,若A中1行与2行交换,则可分解为LU对B,显然,但它仍可分解为分解不唯一,为一任意常数,且U奇异;C可分解,且唯一;5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式3.1.2和3.1.3计算得6. 用平方根法解方程组解:用分解直接算得由及求得7. 设,证明解:即,另一方面故9.设计算A的行范数,列范数及F-范数和2范数解:故10.设为上任一种范数,是非奇异的,定义,证明证明:根据矩阵算子定义和定义,得令,因P非奇异,故x与y为一对一,于是10. 求下面两个方程组的解,并利用矩阵的条件数估计.,即,即解:记则的解,而的解故而由3.12的误差估计得表明估计略大,是符合实际的;11.是非题若"是"在末尾填+,"不是"填-:题目中1若A对称正定,,则是上的一种向量范数2定义是一种范数矩阵3定义是一种范数矩阵4只要,则A总可分解为A=LU,其中L为单位下三角阵,U为非奇上三角阵5只要,则总可用列主元消去法求得方程组的解6若A对称正定,则A可分解为,其中L为对角元素为正的下三角阵7对任何都有8若A为正交矩阵,则答案:1+2-3+4-5+6+7-8+第六章解线性方程组的迭代法习题六1.证明对于任意的矩阵A,序列收敛于零矩阵解:由于而故2. 方程组1 考查用Jacobi法和GS法解此方程组的收敛性.2 写出用J法及GS法解此方程组的迭代公式并以计算到为止解:因为具有严格对角占优,故J法与GS法均收敛;2J法得迭代公式是取,迭代到18次有GS迭代法计算公式为取3. 设方程组证明解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散解:Jacobi迭代为其迭代矩阵,谱半径为,而Gauss-Seide 迭代法为其迭代矩阵,其谱半径为由于,故Jacobi迭代法与Gauss-Seidel法同时收敛或同时发散;4. 下列两个方程组Ax=b,若分别用J法及GS法求解,是否收敛解:Jacobi法的迭代矩阵是即,故,J法收敛、GS法的迭代矩阵为故,解此方程组的GS法不收敛;5. 设,detA≠0,用,b表示解方程组Ax=f 的J法及GS法收敛的充分必要条件.解J法迭代矩阵为,故J法收敛的充要条件是;GS法迭代矩阵为由得GS法收敛得充要条件是6. 用SOR方法解方程组分别取ω=1.03,ω=1,ω=1.1精确解,要求当时迭代终止,并对每一个ω值确定迭代次数解:用SOR方法解此方程组的迭代公式为取,当时,迭代5次达到要求若取,迭代6次得7. 对上题求出SOR迭代法的最优松弛因子及渐近收敛速度,并求J法与GS法的渐近收敛速度.若要使那么J法GS法和SOR法各需迭代多少次解:J法的迭代矩阵为,故,因A为对称正定三对角阵,最优松弛因子J法收敛速度由于,故若要求,于是迭代次数对于J法,取K=15对于GS法,取K=8对于SOR法,取K=58. 填空题1要使应满足.2 已知方程组,则解此方程组的Jacobi迭代法是否收敛.它的渐近收敛速度RB=.3 设方程组Ax=b,其中其J法的迭代矩阵是.GS法的迭代矩阵是.4 用GS法解方程组,其中a为实数,方法收敛的充要条件是a满足.5 给定方程组,a为实数.当a满足,且0<ω<2时SOR迭代法收敛.答:12J法是收敛的,3J法迭代矩阵是,GS法迭代矩阵4满足5满足第七章非线性方程求根习题七1.用二分法求方程的正根,使误差小于0.05解使用二分法先要确定有根区间;本题fx=x2-x-1=0,因f1=-1,f2=1,故区间1,2为有根区间;另一根在-1,0内,故正根在1,2内;用二分法计算各次迭代值如表;其误差2. 求方程在=1.5附近的一个根,将方程改写成下列等价形式,并建立相应迭代公式.1 ,迭代公式.2 ,迭代公式.3,迭代公式.试分析每种迭代公式的收敛性,并选取一种收敛最快的方法求具有4位有效数字的近似根解:1取区间且,在且,在中,则L<1,满足收敛定理条件,故迭代收敛;2,在中,且,在中有,故迭代收敛;3,在附近,故迭代法发散;在迭代1及2中,因为2的迭代因子L较小,故它比1收敛快;用2迭代,取,则3. 设方程的迭代法1 证明对,均有,其中为方程的根.2 取=4,求此迭代法的近似根,使误差不超过,并列出各次迭代值.3 此迭代法收敛阶是多少证明你的结论解:1迭代函数,对有,2取,则有各次迭代值取,其误差不超过3故此迭代为线性收敛4. 给定函数,设对一切x,存在,而且.证明对的任意常数,迭代法均收敛于方程的根解:由于,为单调增函数,故方程的根是唯一的假定方程有根;迭代函数,;令,则,由递推有,即5. 用Steffensen方法计算第2题中2、3的近似根,精确到解:在2中,令,,则有令,得,与第2题中2的结果一致,可取,则满足精度要求.对3有,原迭代不收敛.现令令6. 用Newton法求下列方程的根,计算准确到4位有效数字.1在=2附近的根.2在=1附近的根解:1Newton迭代法取,则,取2令,则,取7. 应用Newton法于方程,求立方根的迭代公式,并讨论其收敛性.解:方程的根为,用Newton迭代法此公式迭代函数,则,故迭代法2阶收敛;还可证明迭代法整体收敛性;设,对一般的,当时有这是因为当时成立;从而,即,表明序列单调递减;故对,迭代序列收敛于。
Ch1.引论例1分析用Cramer 法则解一个n 阶线性方程组的计算量。
解计算机的计算量主要取决于乘除法的次数。
用Cramer 法则解一个n 阶线性方程组需计算n 1个n 阶行列式,而用定义 计算n 阶行列式需n! n -1次乘法,故总计共需 n • 1 n! n -1[=[n • 1 ! n -1 。
此外,还需n 次除法。
当n =20时,计算量约为n ,1 ! n-1 = 9.7 1020次乘法。
即使用每秒百亿次乘法的计算机,也需计算3000多年才能完成。
可见,Cramer 法则仅仅是理论上的,不是面向计算机的。
111 1_ _- -(截断误差):"0.3667 (舍入误差)。
2 6 24 1201x n例3计算I n = [丁dx (n = 0,1,2…,6),并做误差分析 x 十5n n _1 n _1解I n =t 1x +5x -5x亠1dx6 *-dx_—5l n 「, I0==ln —肚 0.1823=x +5nx + 5 5r- *I0 :0.1823算法1」 * * 1 , 结果见下表。
I n :-5I d + —-nn n▼ x xnx1 1111 、 又 < 才A - < I n 兰 ----- ,I 6+ 1 = 0.02619=6 x +5 5 '6(n+1)5(n +1) 2>x7 5汉7丿16 =0.02619算法2」*n ;2 例2根据Taylor展式宀1*;! nX H- *八+ n!R n (x )计算e'(误差小于0.01) 解e 12! 3! 4! 5!R 5(X )0 0.1823 0.1823 0.1823 1 0.0885 0.0884 0.0884 2 0.0575 0.0580 0.0580 3 0.0458 0.0431 0.0431 4 0.0208 0.0344 0.0343 5 0.0958 0.0281 0.0285 6 -0.3125 0.0262 0.0243误差分析:= 5nE °,即在计算过程中误差放大了 5n倍。
题型一:有效数字1,确定113的首位数字x 1,要使113的近似值x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,要使112的相对误差不超过0.5×10-4,至少要保留几位有效数字?(2009-2010) 3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B)5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010) 4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)x i -1 0 2 3 f(x i )-7-1177,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008) 8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007) 9,已知f(x)的如下函数值表x i 0.1 0.2 0.3 0.4 f(x i )1.122.652.811.68选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表x i 1.0 1.5 2.0 sinx i0.84150.99750.9093用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x); (2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x); (3),当(3)(4)1|()|2|()|4,[0,3]fx fx x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:x -2 -1 0 1 2 y121用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i i x x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x=+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:x i 0 1 2 3 y i13610请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---====(1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x)(2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i i g f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x=+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:u i 0 1 9 16 v i11/21/31/4请用最小二乘法求形如011v c c u=+的经验公式,并求平方误差.(2006-2007)011:c c u v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hhhf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010) 3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)231212113112211224112211335112211212000010001,23025031,53()1(,)0,()(,)x A A x dx A x A x x dx A x A x x dx A x A x x dx x A A g x xg g g x x xg g ααα----+==+==+==+===-=-======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x 得解上述方程组得:x 法二:构造二次正交多项式11110110022110021211222112111221121(,)(,)30,(,)(,)53()()()()53()0,511,33133()[()()]355xg g g g g g g g g x x g x g x x g x x x x x x A x dx A x dx x x x x x f x dx f f βαβρ---=====--=-==-=---=⋅==⋅=--≈-+⎰⎰⎰令得高斯点: x 故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:3250()()(),(g x x ax b b x g x dx b a x xg x dx a g x x A A A x A x A x A x A x A x x x x x x x c x c x ϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x ,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5x A x A x A x c x c A x c x c A x A x c A x A x c A A c c A x x A x x A x A x c A x A x c A x A x c c x x ϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hhf x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式1211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006)7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hhf x dx A f h A f A f h --≈-++⎰.(2004-2005)8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分32x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点2,设定积分13x edx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分2cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分14x edx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005) 8,对于定积分1()If x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫ ⎪ ⎪ ⎪-⎝⎭的Doolittle 分解.(2010-2011) 212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫ ⎪- ⎪ ⎪⎝⎭的Doolittle 分解.(2009-2010) 3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)1234123410001013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解;(2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)432110205102051020*******101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x 7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求cond ∞(A).(2009-2010) 3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)222max max max 111-122-12max max max 1222||||()()()3||||(())()=()=1()|||||||| 3.T T A A A A A A A A A A cond A A A λλλλλλ----========解答:()则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪ ⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005) 6,设1231032475A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006)5332ρ+解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()002110211||0,=0=-=-12J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛;(2),取(0)(0,0,0)T x =,用雅可比迭代法进行求解,要求(1)()5||||10k k xx +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x(3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k kx x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 4134tan 5k k k k k k k Ak k k kkk⎛⎫- ⎪+ ⎪ ⎪= ⎪+ ⎪ ⎪+ ⎪⎝⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答:12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005)()01lim 10K k A→∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求125的值.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求6170的近似值的迭代公式,并确定初值的取值范围.(2010-2011)6661556'5"4"*600066601050517017001701170[5]66()170,()60,()300170()()0,.1170170170(5)17061170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><-=+-=+-解答:转化为方程的正根.由牛顿迭代法得迭代公式:当时,故此时收敛到当0<时,设66'6666611*60170,(0,170)1850()(5)0,(0,170),()(170)0,6:1700,170,(0,170),.0.x g x x g x g xx x x x x ∈=-<∈>=->>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求5140近似值的迭代公式,并给出初值的取值范围.(2009-2010)解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于5;又c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<1110,=50;51.25k k cx x c ϕϕϕϕϕ+-=-<<-<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又,则当(x )=0,即c=-时,收敛最快5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x x k ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,123c =-计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)3,()(3)()|133|12|1,11,3,-0,,0.333(2),()0+0,636(3),k k k x x x x c x x x x c x x cx cx x c or c x x ϕϕϕϕ++==+-=±=+-<+<-<<=±<<<<==±±解答:(1),令x 收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx 得c=故c=时,迭代收敛最快.迭代公式为:2012346*431(3)2321.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k k x x x x x x x x x x -=--=====-<=又因为|故6,方程x 3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)3'3223132(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]11()|||0.33,(13) 5.5xx x x x x ϕϕϕϕϕ+===∈∈=≤<+解答:(x)=取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x =-+=有一个两重根02x =,请以初值x 0=1.5,用m 重根的牛顿迭代法计算其近似值,要求51||10k k x x -+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xex +-=在0.6附近有一根x ,迭代法214,0,1,2kx k x ek +=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求120的近似值的迭代公式,并给出初值的取值范围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式xk+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230x xe -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因); (2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e+-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020x e x +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由;(2),取x 0=0.09,用局部收敛的迭代法计算x 5; (3),用牛顿法求3234的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由. 3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1)21x x +-,x 很大;(2)311x +-,|x|很小.(2010-2011)223331(1):1111=.1+1x x x x x x x +-=+++-+解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:;2,为了提高计算精度,当正数x 很大时,计算1x x +-时应转化成什么形式.(2005-2006)3,给出计算积分1,(0,1,2,10)10nnx I dx n x ==+⎰的递推稳定算法和初值.(2010-2011) 1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求1x n nI e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:g(n)(n+1)22n+3 2 g(n+1) (n+2)2 2n+5 2 g(n+2) (n+3)2 2n+7 g(n+3) (n+4)2 g(n+4)函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nbi ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n n n n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2bab af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。
数值分析典型例题 Revised as of 23 November 2020第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。
ln2 第二章典型例题例1 用顺序消去法解线性方程组⎪⎩⎪⎨⎧1-=4+2+4=+2+31-=4++2321321321x x x x x x x x x解 顺序消元⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-⋅+-⋅+-⋅+1717005.555.0014125.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r 于是有同解方程组⎪⎩⎪⎨⎧-==--=++17175.555.0142332321x x x x x x 回代得解x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组⎪⎩⎪⎨⎧5=+2+23=++1=2-2+321321321x x x x x x x x x 解 建立迭代格式⎪⎪⎩⎪⎪⎨⎧+--=+--=++-=+++5223122)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)第1次迭代,k =0X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1⎪⎪⎩⎪⎪⎨⎧-=+⨯-⨯-=-=+--==+⨯+⨯-=3532123351515232)2(3)2(2)2(1x x x X (2)=(5,-3,-3)T第3次迭代,k =2⎪⎪⎩⎪⎪⎨⎧=+-⨯-⨯-==+---==+-⨯+-⨯-=15)3(25213)3(511)3(2)3(2)2(3)3(2)3(1x x x X (3)=(1,1,1)T第4次迭代,k =3⎪⎪⎩⎪⎪⎨⎧=+⨯-⨯-==+--==+⨯+⨯-=1512121311111212)2(3)2(2)2(1x x x X (4)=(1,1,1)T例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。
证明 例2中线性方程组的系数矩阵为A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-122111221 于是 D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001 D -1=D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=022001000L ~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000100220U ~雅可比迭代矩阵为B 0=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--022101220022101220100010001)U ~L ~(D 1 0))1(22[2)]1(2)2([2221102221122B I 30==+-+-+-+=++=-=-λλλλλλλλλλλλλλλ得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。
高斯-赛德尔迭代矩阵为G =-U ~)L~D (1-+ =-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20032022000010022012001100100010022012201100110)2(20032022I 2=-=---=-λλλλλλG解得特征根为1=0,2,3=2。
由迭代基本定理4知,高斯-赛德尔迭代发散。
例5 填空选择题:1. 用高斯列主元消去法解线性方程组⎪⎩⎪⎨⎧2=3--3=3+2+20=+2++21321321x x x x x x x x 作第1次消元后的第2,3个方程分别为 。
答案:⎩⎨⎧=+--=-5.35.125.15.03232x x x x解答 选a 21=2为主元,作行互换,第1个方程变为:2x 1+2x 2+3x 3=3,消元得到⎩⎨⎧=+--=-5.35.125.15.03232x x x x 是应填写的内容。
3.用高斯-赛德尔迭代法解线性方程组⎪⎩⎪⎨⎧5=+2+23=++1=2-2++321321321x x x x x x x x x 的迭代格式中)1(2+k x = (k =0,1,2,…)答案:)(3)1(13k k x x --+解答:高斯-赛德尔迭代法就是充分利用已经得到的结果,求x 2的值时应该用上x 1的新值。
第三章典型例题例1 已知函数y =f (x )的观察数据为试构造拉格朗日插值多项式P n (x ),并计算f (-1)的近似值。
[只给4对数据,求得的多项式不超过3次] 解 先构造基函数845-4--=5-2-4-2-0-2-5-4-=0))(())()(())(()(x x x x x x x l405-4-2+=5-04-02--05-4-2+=1))()(())())((())()(()(x x x x x x x l245-2+-=5-40-42+45-2+=2))(())()(()()()(x x x x x x x l35)4()2()45)(05)(25()4()2()(3-+=--+-+=x x x x x x x l所求三次多项式为P 3(x )=∑=nk k k x l y 0)(=845-4-⨯5-))((x x x +405-4-2+))()((x x x -245-2+⨯3-))(()(x x x +354-2+)()(x x x =1+2155-141-42523x x xf (-1)P 3(-1)=724=1+2155-141-425-例3 设n x x x x ,...,,,210是n +1个互异的插值节点,),...,,,)((n k x l k 210=是拉格朗日插值基函数,证明:(1) 1≡∑0=n k k x l )( (2) ),...,,,()(n m x x x l m nk m k k 210=≡∑0=证明 (1) P n (x )=y 0l 0(x )+y 1l 1(x )+…+y n l n (x )=∑=nk k k x l y 0)()()()(),()!()()()(x R x P x f x n f x R n n n n n +=∴1+=1+1+ωξ当f (x )1时,1=)()!()()()()()(x n f x l x R x P n n kk k n n 1+1+0=1++⨯1=+∑ωξ 由于0=1+)()(x f n ,故有1≡∑0=nk k x l )((2) 对于f (x )=x m ,m =0,1,2,…,n ,对固定x m (0mn ), 作拉格朗日插值多项式,有)()!()()()()()(x n f x l x x R x P x n n nk kmk n n m1+1+0=1++=+≈∑ωξ当n >m -1时,f (n +1) (x )=0,R n (x )=0,所以 m nk k m k x x l x ≡∑0=)(注意:对于次数不超过n 的多项式011-1-++++=a x a x a x a x Q n n n n n ..)(,利用上结果,有011-1-++++=a x a x a x a x Q n n n n n ..)( =∑∑∑∑0=00=10=1-1-0=++++nk k n k k k nk n kk n nk n kk n x l a x x l a xx l a x x l a )()(...)()(=∑∑==--=++++nk k kn nk k n kn nkn k x l x Qa ax x a x a x l 00011)()(]...)[(上式∑=nk k k n x l x Q 0)()(正是Q n (x )的拉格朗日插值多项式。
可见,Q n (x )的拉格朗日插值多项式就是它自身,即次数不超过n 的多项式在n +1个互异节点处的拉格朗日插值多项式就是它自身。
例5 已知数据如表的第2,3列,试用直线拟合这组数据。
解 计算列入表中。
n =5。
a 0,a 1满足的法方程组是⎩⎨⎧5105=55+1531=15+51010.a a a a解得a 0=, a 1=。
所求拟合直线方程为 y =+ 例6选择填空题1. 设y =f (x ), 只要x 0,x 1,x 2是互不相同的3个值,那么满足P (x k )=y k (k =0,1,2)的f (x )的插值多项式P (x )是 (就唯一性回答问题)答案:唯一的3. 拉格朗日插值多项式的余项是( ),牛顿插值多项式的余项是( )(A) )()!()()()()()(x n f x P x f x R n n n n 1+1+1+=-=ωξ (B) f (x ,x 0,x 1,x 2,…,x n )(x -x 1)(x -x 2)…(x -x n -1)(x -x n )(C) )!()()()()()(1+=-=1+n f x P x f x R n n n ξ(D) f (x ,x 0,x 1,x 2,…,x n )(x -x 0)(x -x 1)(x -x 2)…(x -x n -1)(x -x n )答案:(A),(D)。
见教材有关公式。
第四章典型例题例1 试确定求积公式)()(d )(31+31-≈⎰11-f f x x f 的代数精度。
[依定义,对x k (k =0,1,2,3,…),找公式精确成立的k 数值]解 当f (x )取1,x ,x 2,…时,计算求积公式何时精确成立。
(1) 取f (x )=1,有左边=2=1=⎰⎰11-11-x x x f d d )(, 右边=2=1+1=31+31-)()(f f(2) 取f (x )=x ,有左边=0=0=⎰⎰11-11-x x x f d d )(, 右边=0=31+31-=31+31-)()(f f(3) 取f (x )=x 2,有左边=32==⎰⎰11-211-x x x x f d d )(, 右边=32=31+31-=31+31-22)()()()(f f(4) 取f (x )=x 3,有左边=0==⎰⎰11-311-x x x x f d d )(, 右边=0=31+31-=31+31-33)()()()(f f(5) 取f (x )=x 4,有左边=52==⎰⎰11-411-x x x x f d d )(, 右边=92=31+31-=31+31-44)()()()(f f当k 3求积公式精确成立,而x 4公式不成立,可见该求积公式具有3次代数。