第三章平均指标练习及答案
- 格式:doc
- 大小:28.00 KB
- 文档页数:7
统计学第三章练习题(附答案).单项选择题B.平均差 D.离散系数2.如果峰度系数k >3,表明该组数据是(A )0A. 64.5 和 78.5 D.64.5 和 67.55.对于右偏分布,平均数、中位数和众数之间的关系是( A)o7.在离散程度的测度中,最容易受极端值影响的是( A)08.在⽐较两组数据的离散程度时,不能直接⽐较它们的标准差,因为两组数据的 (D )oA.标准差不同C 数据个数不同1.⽐较两组数据的离散程度最合适的统计量是(D )。
A.极差 C 标准差A.尖峰分布B 扁平分布C 左偏分布 D.右偏分布3.某⼤学经济管理学院有 1200 名学⽣,法学院有 800 名学⽣,医学院有 320 名学⽣,理学院有 200 名学⽣0上⾯的描述中,众数是(B)0A.1200B.经济管理学院C.200D 理学院4. 某班共有 25 名学⽣ , 期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56考试分数下四分位数和上四分位数分别是( A)0B.67.5 和 71.5C.64.5和 71.5A.平均数>中位数>众数B. 中位数>平均数>众数 C 众数〉中位数〉平均数D.众数〉平均数〉中位数6.某班学⽣的统计学平均成绩是70分,最⾼分是 96分,最低分是 62分,根据这些信息,可以计算的测度离散程度的指标是(B)0A ⽅差B 极差C 标准差 D.变异系数A.极差B ⽅差C 标准差D.平均差B.⽅差不同 D.计量单位不同9.总量指标按其反应的内容不同,可分为( C)0A.总体指标和个体指标B.时期指标和时点指标c 总体单位总量指标和总体标识总量指标 D.总体单位总量指标和标识单位指标10.反映同⼀总体在不同时间上的数量对⽐关系的是(D.⽐例相对指标11.2003年全国男性⼈⼝数为 66556万⼈,2002年全国⾦融、保险业增加值为 5948.9亿元,2003年全社会固定资产投资总额为 55566.61亿元,2003年全国城乡居民⼈民币储蓄存款余额103617.7亿元。
3%1%2%5.1++453025453025++++统计学第三章出题优课后习题答案原多项选择第三题D 选项解释有误,现在已经重新更改。
一、单项选择题1. 某商场某月商品销售额为1200万元,月末商品库存额为400万元,这两个总量指标( )。
A. 是时期指标B. 前者是时期指标,后者是时点指标C. 是时点指标2. 国民总收入与国内生产总值之间相差一个( )。
A. 出口与进口的差额B. 固定资产折旧C. 来自国外的要素收入净额3. 有三批产品,废品率分别为1.5%、2%、1%,相应的废品数量为25件、30件、45件,则这三批产品平均废品率的计算式应为( )。
A. B.C. D.4. 下列各项中,超额完成计划的有( )。
A. 利润计划完成百分数103.5%B. 单位成本计划完成百分数103.5%C. 建筑预算成本计划完成百分数103.5%5. 某厂某种产品生产量1月刚好完成计划,2月超额完成2%,3月超额完成4%,则该厂该年一季度各月平均超额完成计划的计算方法是( )。
A. 2%+4%=6%B. (2%+4%)÷2=3%C. (2%+4%)÷3=2%453025%1%2%5.1++++3%1%2%5.1⨯⨯6. 甲、乙两组工人的平均日产量分别为18件和15件。
若甲乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量( )。
A. 上升B. 下降C. 不变D.可能上升,也可能下降7. 当各个变量值的频数相等时,该变量的()。
A. 众数不存在B. 众数等于均值C. 众数等于中位数8. 如果你的业务是提供足球运动鞋的号码,那么哪一种平均指标对你更有用?( )A. 算术平均数B. 几何平均数9. 某年年末某地区城市和乡村平均每人居住面积分别为30.3和33.5平方米,标准差分别12.8和13.1平方米,则居住面积的差异程度( )。
A. 城市大B. 乡村大10. 下列数列的平均数都是50,在平均数附近散布程度最小的数列是( )。
第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
第五章相对与平均指标一、填空题1.总量指标的表现形式是__绝对数___,其数值随着___总体范围__大小而增加或减少。
2.根据总量指标所反映的社会经济现象总体内容不同,可将总量指标分为___总体单位总量__和___总体标志总量__两种。
3.总量指标是计算__相对指标, 平均指标___的基础。
4.某高校在校生人数是__时点___指标,其数值__不可___相加;毕业生人数是__时期___指标,其数值__可以___相加。
5.价值指标的特点是具有广泛的__综合性___和__概括性___。
6.属于同一总体对比的相对指标有__结构___、__比例___和___计划完成__;属于不同总体对比的相对指标有__比较___和__强度___。
7.相对指标的计量形式有两种,即:__无名数___和__复名数___,其中,除强度相对指标用__复名数___表示外,其余都用__无名数___表示。
8.检查长期计划执行情况时,如计划指标是按计划期末应达到的水平下达的,应采用___水平__法计算;如计划指标是按整个计划期累计完成总数下达的,应采用_累计___法计算。
9.某校在校生中男女之比为1.5:1,这是___比例__相对指标。
其中,男生所占比重为60%,这是___结构__相对指标。
10.同类指标数值在不同空间作静态对比形成__比较相对___指标;而同类指标数值在不同时间对比形成__动态相对___指标。
11.统计中的平均指标主要有__算术平均数___、__调和平均数___、__几何平均数___、__中位数___和___众数__五种。
1. 12.简单算术平均数是加权算术平均数的__特殊形式___,事实上简单算术平均数也有___权数__存在,只不过各变量值出现的__权数___均相等。
2. 13.各变量值与其算术平均数的__平方和___等于最小值。
3. 14.权数对于平均数的影响作用,决定于作为权数的__各组单位数__的比重大小。
4. 15.在某市范围内以企业为单位研究企业平均规模时,各企业职工人数总和是__标志___总量指标。
《统计学》第三章综合指标练习题之一
第5小题可先不做,讲完平均指标再做
1.如果所有标志值的频数都减少为原来的l/5,而标志值仍然不变,试确定算术平均数将如何变化?变化多少?
2.如果所有标志值都减少为原来的l/5,而频数仍然不变,试确定算术平均数将如何变化?变化多少?
3.某企业5月份计划要求销售收入比上月增长8%,实际增长12%,其超计划完成程度为多少。
4.某企业7月份计划要求成本降低3%,实际降低5%,则计划完成程度为多少?
5.现有一数列:3,9,27,8l,243,729,2187,反映其平均水平最好应该用哪一种平均数?为什么?
6.某公司下属三个企业的有关资料如下:
试根据计划完成程度相对指标的计算公式,推算表中空白处的数据。
试计算:
(1)各季度进货计划完成程度?
(2)上半年进货计划完成程度?
(3)上半年累计计划进度执行情况?
8.某市某“五年”计划规定,计划期最末一年甲产品产量应达到70万吨,实际生产情况如下表:
单位:万吨
试计算该市甲产品产量五年计划完成程度和提前完成计划的时间?
9.某地区2009-2010年生产总值资料如下表:单位:亿元
根据上述资料:
(1)计算2009年和2010年第一产业、第二产业与第三产业的结构相对指标与比例相对指标;
(2)计算该地区生产总值、第一产业、第二产业、第三产业增加值的动态相对指标及增长百分数。
发展情况。
第三章统计综合指标一、名词解释1、总量指标2、时期指标3、相对指标4、强度相对指标5、算术平均数6-标致变异指标7、标准差系数二、填空1、总量指标是对总体和进行统计描述的基础数据,是从上认识客观事物的起点数据。
2、是统计中最常用的最基本的综合指标。
3、总量指标按照其反映的总体内容不同,可划分为和。
总量指标反映的时间状况不同,可分为总量指标和总量指标。
4、根据被研究对象的特点、性质和作用,总量指标的计量单位一般有三种,即、、。
实物单位是反映事物使用价值的计量单位,它又可以分为、、双重单位和。
5、相对指标的基本公式为:6、相对指标数值有两种计量形式:一是相对指标,二是相对指标。
7、无名数相对指标是指相对指标值后边没有计量单位,或者没有实质性的具体计量单位而只有抽象的计量单位。
具体有、、、。
8、根据不同的研究目的、任务和对比基础,相对指标可分为相对指标(与计划数对比)、相对指标、相对指标(与部分数额对比)、相对指标(与同类典型数额对比)、相对指标(与有联系的总体数额对比)、相对指标(与历史数额对比)。
9、在社会经济统计中,(也称为均值)是最常用的最基本的反映分布数列中各变量值分布的集中趋势的代表值。
它是在总量指标基础上计算出来的。
10、算术平均数依据计算方法不同,又分为算术平均数和算术平均数。
11、在不掌握各组单位数的资料及总体单位数的情况下,如果只掌握各组的标志值和各组的标志总量及总体总量,则用平均数的方法计算平均指标。
12、标志变异指标是反映总体各单位标志值差异程度的综合指标,它表明总体各单位标志值的和,又称。
13、按计算方法的不同,标志变异指标一般常用的有、、。
14、极差的计算公式:。
标准差的简单式计算公式:。
标准差的加权式计算公式:。
标准差系数的计算公式:。
15、对于不同水平即平均指标不相同的总体,不宜直接用标准差比较其标志变动度的大小,而需要利用进行比较。
16、标准差愈大,说明标志变动程度愈,因而平均数的代表性就愈。
第39讲平均数、中位数和众数题一:某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:50则该班捐款金额的平均数是.题二:在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学捐款情况绘制成如图的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是______.题三:在一次数学单元考试中,某小组7名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70.这组数据的中位数是________.题四:在一次数学测验中,12名学生的成绩如下:60,95,80,75,80,85,60,55,90,55,80,70.这组数据的中位数是________.题五:在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是________.题六:在一次数学竞赛中,10名学生的成绩如下:75,80,80,70,85,95,70,65,70,80.则这次竞赛成绩的众数是________.题七:为了了解2012年我市初三学生理化操作实验考试的成绩情况,随机抽取了初三50位考生的得分情况如下表:根据表中信息,解答下列问题:(1)求这50位同学理化实验操作得分的众数、中位数、平均数.(2)将这50位同学此次操作得分制成如图所示的扇形统计图.试计算扇形①的圆心角度数.题八:在本学期第九周进行的白云区08年初三毕业班中考第一次模拟考试(简称初三“一模”)中,九年级某班50名同学选择题(共10小题,每小题3分,满分30分)的得分情况如下表:选择题得分分值及人数统计表(1)该班选择题中,答对3题的人数为______人;(2)该班选择题得分的平均分为______,众数为______,中位数为______;(3)为了制作右面的扇形统计图(如图),请分别求出得20分以下人数占总人数的百分比和扇形圆心角度数及得满分人数占总人数的百分比和扇形圆心角度数.题九:“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:8486(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?题十:某科技开发公司现有员工50人,所有员工的月工资情况如表:请根据上述内容,解答下列问题:(1)该公司的高级技工有多少名?(2)所有员工月工资的中位数、众数是多少元?(3)去掉四个管理人员的工资后,请你计算出其他普通工作人员的月平均工资.(最后结果保留两位小数)第39讲平均数、中位数和众数题一:38.详解:该班捐款金额的平均数是10315630114011501360650⨯+⨯+⨯+⨯+⨯+⨯=38.题二:10.详解:根据题意,第一组捐款金额的平均数是6541022512⨯+⨯+⨯=10.题三:80.详解:将这组数据按从小到大的顺序排列为:65,70,70,80,90,95,100,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.题四:77.5.详解:将12名学生的成绩从高到低重新排列:95,90,85,80,80,80,75,70,60,60,55,55,中间的两个数是80和75,故中位数是80752+=77.5.题五:9.详解:依题意得9出现了三次,次数最多,∴这组数据的众数是9.题六:70和80.详解:在这一组数据中70和80是出现次数最多的,故众数是70和80.题七:9、9、8.82 ;57.6°.详解:(1)众数为9,中位数为9,平均分=151020988572650⨯+⨯+⨯+⨯+⨯=8.82;(2)∵扇形①所占的百分数为250×100%550×100% =16%,∴扇形①圆心角度数=16%×360°=57.6°.题八:0;23.52,24,24;18%,64.8%,16%,57.6°.详解:(1)∵得9分的人数为0,∴该班选择题中,答对3题的人数为0人;(2)平均分为(6×1+12×2+18×6+21×8+24×15+27×10+30×8)÷50=23.52;24分的人数最多,众数为24;第25个,第26个的得分都是24,中位数为24.(3)20分以下人数占的比例=(1+2+6)÷50=18%,在扇形统计图中所对的圆心角=360°×18%=64.8°;满分人数占的比例=8÷50=16%,在扇形统计图中所对的圆心角=360°×16%=57.6°.题九:85.5,85;3号选手和6号选手.详解:(1)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,∴中位数是(85+86)÷2=85.5,85出现的次数最多,∴众数是85;(2)5号选手的成绩为:65×0.2+88×0.3+94×0.5=86.4分;6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9分.∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.题十:16;1700,1600;1713.04元.详解:(1)该公司“高级技工”的人数=5名),(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是160018002=1700(元);在这些数中1600元出现的次数最多,因而众数是1600元;故中位数1700元,众数1600元;(3)平均数=(2025×2+2200×3+1800×16+1600×24+950)÷46≈1713.04(元).故其他普通工作人员的月平均工资为1713.04元.。
第五章相对与平均指标一、填空题1.总量指标的表现形式是__绝对数___,其数值随着___总体范围__大小而增加或减少。
2.根据总量指标所反映的社会经济现象总体内容不同,可将总量指标分为___总体单位总量__和___总体标志总量__两种。
3.总量指标是计算__相对指标, 平均指标___的基础。
4.某高校在校生人数是__时点___指标,其数值__不可___相加;毕业生人数是__时期___指标,其数值__可以___相加。
5.价值指标的特点是具有广泛的__综合性___和__概括性___。
6.属于同一总体对比的相对指标有__结构___、__比例___和___计划完成__;属于不同总体对比的相对指标有__比较___和__强度___。
7.相对指标的计量形式有两种,即:__无名数___和__复名数___,其中,除强度相对指标用__复名数___表示外,其余都用__无名数___表示。
8.检查长期计划执行情况时,如计划指标是按计划期末应达到的水平下达的,应采用___水平__法计算;如计划指标是按整个计划期累计完成总数下达的,应采用_累计___法计算。
9.某校在校生中男女之比为1.5:1,这是___比例__相对指标。
其中,男生所占比重为60%,这是___结构__相对指标。
10.同类指标数值在不同空间作静态对比形成__比较相对___指标;而同类指标数值在不同时间对比形成__动态相对___指标。
11.统计中的平均指标主要有__算术平均数___、__调和平均数___、__几何平均数___、__中位数___和___众数__五种。
1.12.简单算术平均数是加权算术平均数的__特殊形式___,事实上简单算术平均数也有___权数__存在,只不过各变量值出现的__权数___均相等。
2.13.各变量值与其算术平均数的__平方和___等于最小值。
3.14.权数对于平均数的影响作用,决定于作为权数的__各组单位数__的比重大小。
4.15.在某市范围内以企业为单位研究企业平均规模时,各企业职工人数总和是__标志___总量指标。
一.单项选择题1.比较两组数据的离散程度最合适的统计量是( D )。
A.极差B.平均差C.标准差D.离散系数2.如果峰度系数k>3,表明该组数据是(A )。
A.尖峰分布B.扁平分布C.左偏分布D.右偏分布3.某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。
上面的描述中,众数是( B )。
B.经济管理学院D.理学院4.某班共有25名学生,期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56,该班考试分数下四分位数和上四分位数分别是(A)。
和和和和5.对于右偏分布,平均数、中位数和众数之间的关系是(A )。
A.平均数>中位数>众数B.中位数>平均数>众数C.众数>中位数>平均数D.众数>平均数>中位数6.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的指标是( B )。
A.方差B.极差C.标准差D.变异系数7.在离散程度的测度中,最容易受极端值影响的是(A )。
A.极差B.方差C.标准差D.平均差8.在比较两组数据的离散程度时,不能直接比较它们的标准差,因为两组数据的( D )。
A.标准差不同B.方差不同C.数据个数不同D.计量单位不同9.总量指标按其反应的内容不同,可分为(C )。
A.总体指标和个体指标B.时期指标和时点指标C.总体单位总量指标和总体标识总量指标D.总体单位总量指标和标识单位指标10.反映同一总体在不同时间上的数量对比关系的是( C )。
A.计划完成成都相对指标B.比较相对指标C.动态相对指标D.比例相对指标年全国男性人口数为66556万人,2002年全国金融、保险业增加值为亿元,2003年全社会固定资产投资总额为亿元,2003年全国城乡居民人民币储蓄存款余额亿元。
第3章数据分析初步 3.1 平均数1.已知一组数据a1,a2,a3,a4,a5的平均数为8,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为( )A. 8B. 9 10. 10 D.112. 一组数据:40、37、x、64的平均数是53,则x的值是( )A. 67B. 69C. 71D. 723.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5, 9.4,9.6, 9.9, 9.3, 9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是( )A.9.2 B.9.3 C.9.4 D.9.54. 有一组数据:2,5,5,6,7,这组数据的平均数为( )A.3 B.4 C.5 D.65. 某学校生物兴趣小组11人到校外采集植物标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个兴趣小组平均每人采集标本是( )A.3件B.4件C.5件D.6件6. 已知一组数据1,7,10,8,a,6,0,3,若x=5,则a应等于( ) A.6 B.5 C.4 D.37. 为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后的什锦糖的售价应为每千克( )A.25元 B.28.5元 C.29元 D.34.5元8. 如图是小芹6月1日-7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是( )A.1小时 B.1.5小时 C.2小时 D.3小时9. 某地区100个家庭收入按从低到高是5800元,…,10000元,各不相同,在输入计算机时,把最大的数错误地输成100000元,则依据错误数字算出的平均值与实际数字的平均值的差是( )A.900元B.942元C.90000元D.1000元10. 某校规定学生的这学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A.80分 B.82分 C.84分 D.86分11. 如果一组数据6,x, 2, 4的平均数为5,那么x为12. 某班40名学生的某次体育素质测验成绩统计表如下:若这个班的体育素质平均成绩是74分,则x=____,y=____.13. 学校把学生的笔试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若他想学期总成绩达到90分,则他笔试的成绩必须达到________分.14. 某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每天的课外阅读时间为____小时.15. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是次16. 对某校八年级随机抽取若干学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下的条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是分17. 国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是18. 某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:求该校初二年级在这次数学考试中的平均成绩?19. 某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名同学中选出20名同学统计了解各自家庭一个月的节水情况,见下表:请你估算这400名同学的家庭一个月节约用水的总量大约是多少?20. 一次数学测验,八年级(1)班第一学习小组有2个同学得分在70~75之间,有5个同学得分在80~85之间,有4个同学得分在85~90之间,有1个同学得分在90~95间.请估计这个班的平均成绩是多少?21. 某红绿灯路口,以每天通过100辆小汽车为标准,超过的小汽车数记为正.测得某周小汽车通过该红绿灯路口的数量与标准量相比的情况如下表:问:(1)哪一天经过红绿灯路口的小汽车最少,有多少辆?哪一天经过红绿灯路口的小汽车最多,有多少辆?(2)平均每天有多少辆小汽车通过这个红绿灯路口?22. 某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6∶3∶1.对应聘的明明、芳芳两人的打分如下表:如果两人中只能录取一人,假若你是人事主管,根据上面的信息,你会录用谁?23. 下表是某居民小区五月份的用水情况:(1)计算这20(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米?24. 学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2,1,3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.25. 甲、乙两人两次同时在同一粮站购买粮食(假设两次购买粮食的单价不同),甲每次购买粮食100 kg,乙每次购买粮食用去100元.设甲、乙两人第一次购买粮食的单价为每千克x元,第二次购买粮食的单价为每千克y元.(1)用含x,y的代数式表示甲两次购买粮食共需付款________元,乙两次共购买________千克粮食.若甲两次购买粮食的平均单价为每千克Q1元,乙两次购买粮食的平均单价为每千克Q2元,则Q1=________元,Q2=________元;(2)若规定两次购买粮食的平均单价较低者,购买粮食的方式是合算的.请你判断甲、乙两人购买粮食的方式哪一个更合算些,并说明理由.26. 某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?参考答案:1---10 BCDCB BCBAD 11. 8 12. 10 8 13. 96 14. 1 15. 4 16. 2.95 17. 5000.318. 解:平均成绩=40×80+42×81+45×82+32×7940+42+45+32=80.619. 解:根据表格可求得所选出的20名同学平均每家一个月的节水量:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m 3),所以400名家庭一个月节约用水的总量大约为400×0.325=130(m 3). 20. 解:组中值分别为:70752+=72.5,80852+=82.585902+=87.5,90952+=92.5.平均成绩为:72.5282.5587.5492.512541⨯+⨯+⨯+⨯+++=145412.535092.512+++=100012=83.3答:这个班的平均成绩约是83.3分.21. 解:(1)从统计表格中得出星期四经过红绿灯路口的小汽车最少,为93辆;星期日经过红绿灯路口的小汽车最多,为113辆 (2)平均数=(8+5-2-7-6+10+13)÷7+100=103, 故平均每天有103辆小汽车通过这个红绿灯路口 22. 解:依题意,得明明的最后成绩为:146163181631⨯+⨯+⨯++=15(分),芳芳的最后成绩为:186163121631⨯+⨯+⨯++=16.8(分),显然由于芳芳的最后得数比明明的最后得分高,所以应录用芳芳.23. (1) (4×2+5×3+6×7+8×5+9×2+11×1)÷20=6.7(m 3). 故这20户家庭的月平均用水量为6.7m 3 .(2) 6.7×500=3350(m 3).故该小区居民每月共用水3350m 3.24. 解:(1)乙的平均成绩:73+80+82+834=79.5,∵80.25>79.5,∴应选派甲 (2)甲的平均成绩:85×2+78×1+85×3+73×410=79.5,乙的平均成绩:73×2+80×1+82×3+83×410=80.4,∵79.5<80.4,∴应选派乙25. (1)(100x +100y) ⎝ ⎛⎭⎪⎫100x +100y x +y 2 2xyx +y(2)Q 1-Q 2=x +y 2-2xy x +y =x -y 22x +y >0,故Q 1>Q 2,所以乙的购买方式合算.26. 解:(1)图略(2)甲的票数是:200×34%=68(票),乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票)(3)甲的平均成绩:x 1=68×2+92×5+85×32+5+3=85.1,乙的平均成绩:x 2=60×2+90×5+95×32+5+3=85.5,丙的平均成绩:x 3=56×2+95×5+80×32+5+3=82.7,∵乙的平均成绩最高,∴应该录取乙。
第三章习题参考答案1.数据分布特征可以从集中趋势、离中趋势及分布形态三个方面进行描述。
平均指标是在反映总体的一般水平或分布的集中趋势的指标。
测定集中趋势的平均指标有两类:位置平均数和数值平均数。
位置平均数是根据变量值位置来确定的代表值,常用的有:众数、中位数。
数值平均数就是均值,它是对总体中的所有数据计算的平均值,用以反映所有数据的一般水平,常用的有算术平均数、调和平均数、几何平均数和幂平均数。
变异指标是用来刻画总体分布的变异状况或离散程度的指标。
测定离中趋势的指标有极差、平均差、四分位差、方差和标准差、以及离散系数等。
标准差是方差的平方根,即总体中各变量值与算术平均数的离差平方的算术平方根。
离散系数是根据各离散程度指标与其相应的算术平均数的比值。
矩、偏度和峰度是反映总体分布形态的指标。
矩是用来反映数据分布的形态特征,也称为动差。
偏度反映指数据分布不对称的方向和程度。
峰度反映是指数据分布图形的尖峭程度或峰凸程度。
2.三批产品的平均废品率为:x̅=25+30+45251.5%+302%+451%=1.3%(因为题目给了废品的数量和废品率,可以计算出总的产品数,所以用废品数除以总产品数得到平均废品率)3.该月这批产品的平均废品率为:x̅=100%−√(100%−1.5%)×(100%−2%)×(100%−2.5%)×(100%−1%) 4=1.75%(这道题错的比较多,首先应该选择几何平均(教材P54:几何平均数常用于总量等于各个数据之积的现象求平均数,如发展速度、某些比率的平均),然后不能直接将废品率进行几何平均(教材P55:计算几何平均数的前提是各个变量值的乘积有经济意义,废品率*废品率是没有经济意义的),应该先计算平均合格率(因为经过连续工序的产品的总合格率=每道工序的合格率之积,这是有经济意义的),再用100%减去平均合格率得到平均废品率)4.先对数据做一个从小到大的排序:186 188 190 199 202 207 208 211 213 215 217 218 219 221 222 223 224 226 228 230 231 234 241 242 245 247 251 253 260 272(1)均值:224.1中位数:222.5众数:不存在(2)切尾均值:223.73(3)下四分位数Q1的位置是:30+14=7.75=734第7个数是208,第8个数是211所以下四分位数Q1=208+34×(211−208)=210.25同理,上四分位数Q2的位置是:3(30+1)4=23.25=2314第23个数是241,第24个数是242所以上四分位数Q2=241+14×(211−208)=241.25极差=272-186=86;四分位差=241.25-210.25=31(4)平均差AD=∑|x−x̅|n=16.4467方差σ2=∑(x−x̅)2n=433.4233标准差σ=√∑(x−x̅)2n=20.81885.因为是定序数据,集中趋势应该选择众数和中位数(教材P58:算数平均数只适用于定量数据,中位数适用于定量和定序数据,众数适用于定量、定序和定类数据);离中趋势应该选择异众比率(教材P63:以上的变异指标均只适用于定量数据,对于定性数据,可以计算“异众比率”来衡量集中趋势值众数的代表性)①从中位数来看,甲城市为“一般”,乙城市为“不满意”,甲城市优于乙城市。
苏科新版九年级上学期第3章数据的集中趋势和离散程度《3.1 平均数》同步练习(有答案)A.42 元B.44 元C.45 元D.46 元二.填空题(共8小题)11.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.12.小文期末语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,但她把数学成绩忘记了,她的数学成绩是.13.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:户数 8 6 6用水量(吨) 4 6 7则这20户家庭的该月平均用水量为吨.14.一组数据1,2,x,5,13的平均数是5,则x的值是.15.如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是.16.小明所在班级为希望工程捐款,他统计了全班同学的捐款情况,并绘制成如图所示的统计图,根据统计图,可计算出全班同学平均每人捐款元.17.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩85分,如果笔试成绩、面试成绩按3:2计算,那么小明的平均成绩是分.18.已知一组数据a1,a2,a3,a4,a5的平均数是8,则另一组数据a1+10,a2﹣10,a3+10,a4﹣10,a5+10的平均数为.三.解答题(共6小题)19.据查,柳州市2019年6月5日至6月9日的气象数据如下,根据数据求出这五天最高气温的平均值.6月5日星期一大雨24~32°C6月6日星期二中雨23~30°C6月7日星期三多云23~31°C6月8日星期四多云25~33°C6月9日星期五多云26~34°C20.在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?21.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有人,扇形统计图中,“B组”所对应的圆心角的度数为;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?22.某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?23.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:12345序号项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.25.某养鱼户搞池塘养鱼,放养鳝鱼苗20190尾,其成活率为70%,随意捞出10尾鱼,称得每尾的重量如下(单位:千克)0.8、0.9、1.2、1.3、0.8、1.1、1.0、1.2、0.8、0.9;根据样本平均数估计这塘鱼的总产量是多少千克?若将鱼全部卖出,每千克可获利润1.5元,预计该养鱼户将获利多少元?参考答案一.选择题1.B.2.D.3.A.4.B.5.A.6.B.7.C.8.C.9.B.10.B.二.填空题11.89.3.12.93分.13.5.5.14.4.15.3.16.41.17.88.18.10.三.解答题19.解:,答:这五天的最高气温平均32℃.20.解:(1)==105(分);==106(分);==106(分);答:乙、丙将被表扬;(2)==108.5(分);==107.7(分);==108.7(分);答:甲、丙将被表扬.21.解:(1)这次被抽查的学生数=72÷60%=120(人),“B组”所对应的圆心角的度数为:360°×=72°.故答案为120,72°;(2)C组的人数为:120×10%=12;条形统计图如下:(3)这餐晚饭有剩饭的学生人数为:2500×(1﹣60%﹣10%)=750(人),750×10=7500(克)=7.5(千克).答:这餐晚饭将浪费7.5千克米饭.22.解:(1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;(2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.23.解:(1)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(2)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),则综合成绩排序前两名人选是4号和2号.24.解:由题意得甲应聘者的加权平均数是=86.25(分).乙应聘者的加权平均数是=86.875(分).∵86.875>86.25,∴乙应聘者被录取.25.解:∵随意捞出10尾鱼,称得每尾的重量如下(单位:千克)8、0.9、1.2、1.3、0.8、1.1、1.0、1.2、0.8、0.9,∴这10尾鱼的平均质量为=1.0千克,∴估计这塘鱼的总产量是20190×70%×1.0=14000千克,∴预计该养鱼户将获利14000×1.5=21000元.。
《统计学概论》第三章课后练习题答案一、思考题1.什么是统计整理,统计整理的对象是什么?P612.什么是统计分组,它可以分为哪几种形式?P633.简述编制变量数列的一般步骤。
P70-754.统计表分为哪几种?P785.什么是统计分布,它包括哪两个要素?P686.单项式分组和组距公式分组分别在什么情况下运用?P667.如何正确选择分组标志?P658.为什么要进行统计分组?其主要作用是什么?P63(2009.01)二、判断题1.统计整理只能对统计调查所得到的原始资料进行加工整理。
(×)P61【解析】统计整理分为两情况:一种是对原始资料进行整理,另一种是对次级资料即已加工过的现成资料进行在整理。
2.对一个既定总体而言,合理的分组标志只有一个。
(×)P67【解析】复合分组就是对同一总体选择两个或两个以上标志进行的分组。
3.在异距数列中,计算次数密度主要是为了消除组距因素对次数分布的影响。
(√)P74 4.组中值是指各组上限和下限之中点数值,故在任何情况下它都能代表各组的一般水平。
(×)P72【解析】当组内标志值分布均匀时,组中值能代表各组的一般水平(平均水平),当组内标志值分布不均匀时,组中值不能代表各组的一般水平(平均水平)。
5.在变量数列中,组数等于全距除以组距。
(×)(2010.01)P71【解析】变量数列的分组可分为等距分组和异距分组,只有在等距分组的情况下,组数等于全距除以组距。
6.统计分组的关键问题是确定组数和组距。
(×)(2009.10)P65【解析】统计分组的关键问题是选择恰当的分组标志。
7.按数量标志分组的目的,就是要区分各组在数量上的差别。
(×)P66【解析】按数量标志分组的目的,并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质。
8.连续型变量可以作单项式分组或组距式分组,而离散型变量只能作组距式分组。
第五章相对与平均指标一、填空题1.总量指标的表现形式是__绝对数___,其数值随着___总体范围__大小而增加或减少。
?2.根据总量指标所反映的社会经济现象总体内容不同,可将总量指标分为___总体单位总量__和___总体标志总量__两种。
?3.总量指标是计算__相对指标, 平均指标___的基础。
?4.某高校在校生人数是__时点___指标,其数值__不可___相加;毕业生人数是__时期___指标,其数值__可以___相加。
?5.价值指标的特点是具有广泛的__综合性___和__概括性___。
?6.属于同一总体对比的相对指标有__结构___、__比例___和___计划完成__;属于不同总体对比的相对指标有__比较___和__强度___。
?7.相对指标的计量形式有两种,即:__无名数___和__复名数___,其中,除强度相对指标用__复名数___表示外,其余都用__无名数___表示。
?8.检查长期计划执行情况时,如计划指标是按计划期末应达到的水平下达的,应采用___水平__法计算;如计划指标是按整个计划期累计完成总数下达的,应采用_累计___法计算。
?9.某校在校生中男女之比为1.5:1,这是___比例__相对指标。
其中,男生所占比重为60%,这是___结构__相对指标。
?10.同类指标数值在不同空间作静态对比形成__比较相对___指标;而同类指标数值在不同时间对比形成__动态相对___指标。
?11.统计中的平均指标主要有__算术平均数___、__调和平均数___、__几何平均数___、__中位数___和___众数__五种。
?1.12.简单算术平均数是加权算术平均数的__特殊形式___,事实上简单算术平均数也有___权数__存在,只不过各变量值出现的__权数___均相等。
?2.13.各变量值与其算术平均数的__平方和___等于最小值。
3.14.权数对于平均数的影响作用,决定于作为权数的__各组单位数__的比重大小。
第三章平均指标与标志变异指标一、填空题1.平均指标是表明__________某一标志在具体时间、地点、条件下达到的_________的统计指标,也称为平均数。
2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的________的大小。
3.几何平均数是n个__________的n次方根,.它是计算和平均速度的最适用的一种方法。
4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。
5.当时,加权算术平均数等于简单算术平均数。
6.利用组中值计算加权算术平均数是假定各组内的标志值是分布的,其计算结果是一个。
7.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。
中位数和众数也可以称为平均数。
8.调和平均数是平均数的一种,它是的算术平均数的。
9.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。
10.较常使用的离中趋势指标有、、、、、。
11.标准差系数是与之比。
12.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。
13.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。
14.在对称分配的情况下,平均数、中位数与众数是的。
在偏态分配的情况下,平均数、中位数与众数是的。
如果众数在左边、平均数在右边,称为偏态。
如果众数在右边、平均数在左边,则称为偏态。
15.采用分组资料,计算平均差的公式是,计算标准差的公式是。
二、单项选择题1.加权算术平均数的大小( )A受各组次数f的影响最大B受各组标志值X的影响最大C只受各组标志值X的影响 D受各组次数f和各组标志值X的共同影响2,平均数反映了( )A总体分布的集中趋势 B总体中总体单位分布的集中趋势C总体分布的离散趋势 D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )A接近于标志值大的一方 B接近于标志值小的一方C不受权数的影响D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( )A各组次数递增 B各组次数大致相等 C各组次数相等 D各组次数不相等5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是( )A大量的 B同质的 C差异的 D少量的8.某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )A计划产值 B实际产值 C工人数 D企业数9.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )A各组的次数必须相等 B各组标志值必须相等C各组标志值在本组内呈均匀分布 D各组必须是封闭组10.离中趋势指标中,最容易受极端值影响的是( )A极差 B平均差 C标准差 D标准差系数11.平均差与标准差的主要区别在于( )A指标意义不同 B计算条件不同 C计算结果不同 D 数学处理方法不同12.某贸易公司的20个商店本年第一季度按商品销售额分组如下:则该公司20个商店商品销售额的平均差为( )A 7万元B 1万元C 12 万元D 3万元13.当数据组高度偏态时,哪一种平均数更具有代表性? ( )A算术平均数 B中位数 C众数 D几何平均数14.方差是数据中各变量值与其算术平均数的( )A离差绝对值的平均数 B离差平方的平均数C离差平均数的平方 D离差平均数的绝对值15.一组数据的偏态系数为1.3,表明该组数据的分布是( )A 正态分布 B平顶分布 C左偏分布 D右偏分布16.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的 B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大 D众数在右边、平均数在左边17.四分位差排除了数列两端各( )单位标志值的影响。
第三章平均指标练习及答案
第三章平均指数和标记变异指数
1,填写问题
1。
平均指数是一种统计指数,表明某个标记在特定的时间、地点和条件下达到_ _ _ _ _ _ _ _ _ _,也称为平均值
2。
权重对算术平均值的影响不是由权重的大小决定的,而是由权重的大小决定的
3。
几何平均数是n的n根。
这是最适合计算和平均速度的方法。
4。
当标记值较大且次数较多时,平均值接近标记值较大的一侧;当标志值小且次数大时,平均值接近标志值较小的一侧。
5。
当加权算术平均值等于简单算术平均值时6.使用组中值计算加权算术平均值时,假设每个组中的标记值都是分布的,计算结果为1 7。
中位数是位于可变序列中的标记值,模式是群体中出现次数的标记值中位数和众数也可以称为平均数
8。
调和平均是一种平均,它是
9。
当变量序列中的算术平均值大于模式时,变量序列的分布是分布的;另一方面,当算术平均值小于模式时,变量序列的分布是分布的10。
更常用的趋势指标
是、、、、11.标准偏差系数是
12。
据了解,XXXX一季度某一系列商品的平均销售数量按商品销售情况分为以下几类:按商品销售情况(低于2万-30元)公司20家店铺
商品销售的平均差价是()如果店铺数量为1.530-40.9 40-50超过3 2(数)甲7万元乙10万元丙12万元丁3万元
9当数据集高度倾斜时,哪个平均值更具代表性?()算术平均值b中值c模式d几何平均值14。
方差为()
A绝对偏差平均值B平方偏差平均值C平方偏差平均值D绝对偏差平均值
15。
一组数据的偏度系数为1.3。
显示这组数据的分布是()正态分布b 平顶分布c左偏置分布d右偏置分布16。
当一组数据属于左偏置分布时,则()
A均值、中值和模式组合成左侧的一个B模式和右侧的
C模式。
平均值越小,平均值越大。
d模式在右侧,平均值为17。
四分位偏差排除了序列两端()单位标志值的影响
A1096B 15% C25 % D35 %
18。
优势比是代表_ _ _ _ _ _ _ _ _ _ _规模的指标。
a中值b模式c算术平均d几何平均3,多项选择
1。
在各种平均值中,不受极值影响的平均值是()算术平均值b谐波平均值c中值d几何平均值e模式
2。
影响加权算术平均值大小的因素有哪些()
A受各组的频率影响,或者频率b受各组的标记值大小的影响
C受各组的标记值共同影响,而权重d只受各组的标记值影响,大小e只受权重大小3影响。
平均值的影响是()
A反映了总体水平
B比较了不同时间、不同地点和不同部门同质人口的平均数量c衡量了人口单位的分散程度d衡量了人口单位分布的集中趋势
E反映了人口的规模4。
模式为()
A位置平均值b总体中出现次数最多的标记值c不受极值
D的影响,适用于标记值
5,其中当总体中的单位数较大且存在明显的集中趋势时,e位于可变序列的中点。
在什么条件下加权算术平均值等于简单算术平均值()a 组中每组的次数相等,b组中每组的次数相等,c组中每组的标记值不相等,1 E组中每组的次数相等,每组的次数占总次数的比例相等。
计算加权算术平均值的公式是()
n?mxf?fm1?xx???ff?D x E x A n B?C
7。
计算和应用平均值的原则是()
A现象的同质性。
b使用组平均值来补充总平均值。
C使用变量序列来补充平均值
D。
时间变量序列用于补充平均值e的解释。
平均值与典型案例
8相结合。
在下列变量序列中,有()
个变量序列b等距变量序列c质量变量序列d时间变量序列e不等变量序列9。
几何平均主要适用于()
A标记值的代数和等于
|在199 B标记值的连续乘积等于总比率的情况下,c标记值的连续乘积等于总速度,而在
D可变级数e具有相等比率的情况下,平均比率为10。
中值为() A,即
B。
c人群单位水平的平均值由标志值出现的次数决定。
人群一般水平的代表值e不受人群中极值的影响
11。
一些偏离中心的趋势指标用著名的数字表示。
它们是()
范围B平均差C标准偏差D平均差系数E四分位偏差12。
不同人群之间的标准偏差不能简单地进行比较。
因为()
A均值不一致b标准差不一致c计量单位不一致
D总单位数不一致e与均值的偏差之和不一致
13。
通过标准差系数可以比较不同数据组之间各标记值的差异程度。
因为标准差系数()
A消除了不同数据组中每个标记值的测量单位的影响
B消除了不同系列的平均水平的影响c消除了每个标记值的差异的影响
D的值与系列的差异水平无关。
e的值与
14系列的平均值无关。
关于范围,下列陈述是正确的:()
A只能表明变量值变化的范围b不能反映所有变量值差异的大小c 反映数据的分布d。
最大的缺点是它受极值e的影响。
最大的优点是它不受极值
15的影响。
在下列指标中,反映数据集中所有数值变化幅度的指标有()
四分位数偏差b平均差c标准偏差d范围e离散系数4和判断问题
1。
权重对算术平均值的影响取决于权重本身的绝对值()2。
算术平均值的大小仅受整体单位的标志值大小的影响()3。
在某些条件下,加权算术平均值可以等于简单算术平均值()()
5。
分位数都是数字平均值()
6。
当数据分组并形成可变序列时,计算算术平均值或调和平均值时应采用简单的公式;相反,采用加权公式()
7。
当每个标记值的连续乘积等于总比或总速度时,应采用几何平均法计算平均值()
8。
模式是人群中最常见的现象()
9。
当计算平均值的基本公式中的分子数据未知时,应采用加权算术平均法进行计算()
10。
人均粮食产量是平均值()()12。
群体中标记值之间的差异越大,标准偏差系数越小()
13。
对于同一序列,同时计算平均差值和标准偏差。
两者必须相等()14。
如果两个系列的范围相同,那么它们的偏差程度也是相同的()() 16。
如果两组数据的平均值和标准差相同,它们的分布也相同()
第三章平均指数和标记变异指数
1,填写问题
1。
同质人口,一般水平2。
绝对数字,相对数字
3。
比率连续乘积的第N个根,平均比率4。
大和小
5。
每组都有相同的重量。
均匀假设值
7。
中间位置,最大,位置8。
倒数符号值,倒数9。
右偏,左偏
10。
异端比率,范围,四分位偏差,平均差异,标准偏差,离散系数11。
标准差,平均值
12.3600
13 . 412 . 31,1.03
14。
相等、不相等、右偏、左偏15.
?x?xfA.D??f
σ?
?(x?x)f?F
2 2,单项选择
1 . D
2 . B
3 . B
4 . C
5 . a
6 . C
7 . b
8 . B
9 . C10 . a11 . d12 . a13 . C14 . b15 . d16 . d17 . C18 . b
3,多项选择问题
1 . ce
2 . ABC
3 . Abd
4 . ABC D
5 . ade
6 . BC
7 . ABC E
8 . Abe
9 . BCE 10 . ade 11 . ABC E1√4 . x 5 . x 6 . x 7。
√ 8.× 9。
√ 10.× 11.× 12.×13.× 14.× 15.× 16。
x
12.3600
13 . 412 . 31,1.03
14。
相等、不相等、右偏、左偏15.
?x?xfA.D??f
σ?
?(x?x)f?F
2 2,单项选择
1 . D
2 . B
3 . B
4 . C
5 . a
6 . C
7 . b
8 . B
9 . C10 . a11 . d12 . a13 . C14 . b15 . d16 . d17 . C18 . b
3,多项选择问题
1 . ce
2 . ABC
3 . Abd
4 . ABC D
5 . ade
6 . BC
7 . ABC E
8 . Abe
9 . BCE 10 . ade 11 . ABC E1√4 . x 5 . x 6 . x 7。
√ 8.× 9。
√ 10.× 11.× 12.× 13.× 14.× 15.× 16。
x。