- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求这几年间国内生产总值的平均发展速度。
第一节 平均指标
(四)中位数(median) 将总体各单位标志值按大小顺序排列,居于 中点位置的那个标志值就是中位数。它是位 置平均数,不受极端值的影响。 1. 由未分组资料计算中位数
先按大小顺序排列,其次利用公式(N+1) /2确定中位数位次,最后确定中位数。
向下累计
500 460 370 260 155 85 35
第一节 平均指标
X X X X n ...
G
12
n
51.0761.0251.0061.0271.022
1.031103.1%
1.067,,1.025, ,1.006, ,1.027, ,1.022,=,2ndF,
x y , 5,=
出现结果:1.0309 即103.1%
例2:某企业生产某一产品,要经过铸造、金加工、电 镀三道工序,各工序产品合格率分别为98%、85%、 90%,求三道工序的平均合格率。
3. 由组距式分组资料计算中位数 确定中位数位次的方法同上,然后按下限公式或上限 公式计算中位数。
按奖金分组(元) 调查户数(户)
500元以下
40
500~800
90
800~1100
110
1100~1400
105
1400~1700
70
1700~2000
50
2000以上
35
合计
500
向上累计
40 130 240 345 415 465 500
第三章 平均指标与变异指标
第一节 平均指标 第二节 变异指标 第三节 标准差、偏度和峰度
第一节 平均指标
第一节 平均指标
一、平均指标的含义 也称平均数,它表明同类现象在一定时间、地 点、条件下所达到的一般水平,是总体内各单 位参差不齐的标志值的代表值。
二、平均指标的作用
❖反映标志值的集中趋势。如农民家庭收入情况。 ❖便于比较分析。如用劳动生产率等平均数对比不同
工资额(元)
工人数(人)
460
5
520
15
600
18
700
10
850
2
合计
50
各组标志值 × 各组单位数 =各组标志பைடு நூலகம்量
工资额(元) x
460 520 600 700 850
合计
工人数(人) 工资总额(元)
f
xf
5
2300
15
7800
18
10800
10
7000
2
1700
50
29600
❖ 甲乙两企业生产同种产品,1月份各批产量和 单位产品成本资料如下,求平均成本。
例:某投资银行25年的年利率分别是:1年3%,4 年5%,8年8%,10年10%,2年15%,求平均年利 率。
XG f x1f1x2f 2...xnf n 251.031.0541.0881.1101.152 1.086108.6%
1.03,,(,1.05,yx,4,),,(,1.08,yx,8,),
企业的生产情况。 ❖分析现象之间的依存关系。 如商业企业规模的大小
和商品流通费用率之间存在的依存关系。
第一节 平均指标
三、平均指标的分类 在社会经济统计中,常用的平均指标有算术平均数、调和平均数、几何
平均数、中位数、众数 等。 (一)算术平均数(mean)
算 术 平 均 数 =总 总 体 体 标 单 志 位 总 总 量 量
n
n
1 xn
1x
2. 加权调和平均数
第一节 平均指标
2. 加权调和平均数
H
1
m1 m2
x1
x2
m1 m2
mn xn
mn
m m x
m为权数。
行驶速度 x
75 80 合计
行驶里程 m
225 160 385
行驶时间 M/x
3 2 5
X
m 38577
h
m5
X
❖ 即行使速度为77公里/小时
怎么做?
第一批 第二批 第三批
甲企业
单位产品
产量比重
成本(元) (%)
1.0
10
1.1
20
1.2
70
乙企业
单位产品 产量比重 成本(元) (%)
1.2
30
1.1
30
1.0
40
第一节 平均指标
(二)调和平均数(harmonic mean) 又称倒数平均数。 1. 简单调和平均数
H
1
1 1
x1 x2
第一节 平均指标
计算公式为:
X x1 f1 x2 f2 f1 f2
n
xn fn fn
xi fi
i1 n
fi
i1
3. 算术平均数的性质
(1)各个变量值与平均数离差之和为0;(2)各个变量 值与平均数的离差平方和为最小值。
❖ 例:某厂工人各级别工资额和相应工 人数资料如表: 试计算工人平均工资。
,(,1.1,yx,10,),,(,1.15,yx,2,), =,2ndF,x y , 25,=
出现结果:1.086 即108.6% 平均年利率=108.6%-1=8.6%
练习:
年份
1998
1999
2000
2001
2002
国内生产总值 78345.2 82067.5 89468.1 97314.8 104790.6
X XX X n G
1
...
2
n=
3 0.98*0.85*0.9
=90.8%
第一节 平均指标
2. 加权几何平均数
G x x f1 f2 fn
f1 f2
1
2
n
xfn f n
xfi i
i1
LnG f1Lnx1 fnLnxn
f
几何平均数也可用对数的算术平均形式表示。因 此,也称对数平均数。
可以证明: xGH
例:求商品的平均价格
某商品的销售情况
销售价格 销售额 (元) (元)
3
90
4
80
5
50
第一节 平均指标
(三)几何平均数(geometric mean) 1. 简单几何平均数
n
Gn x1x2 xn n xi i1
例1:2001-2005年我国工业品的产量分别是上年的 107.6%、102.5%、100.6%、102.7%、102.2%,计 算这5年的平均发展速度。
第一节 平均指标
2. 由单项式分组资料计算中位数 经过分组的资料在确定中位数时,首先将变量数列
的频数或频率进行累加,然后用公式 f 来计算中
2
位数位次,确定中位数组,最后确定中位数。
家庭人口数(人) 家庭户数(户)
1
18
2
90
3
180
4
72
合计
360
向上累计频数(户)
18 108 288 360
1. 简单算术平均数 根据未分组的原始统计资料,将总体各单位的标志值简单加总形成 总体标志总量,而后除以总体单位总数,这种方法为简单算术平 均法。
第一节 平均指标
计算公式为:
X x1 x2 n
n
xn i1 xi
n
2. 加权算术平均数
根据分组整理而形成的变量数列计算算术平均数的 方法,称为加权算术平均法。