离散数学 第2章 计数问题
- 格式:ppt
- 大小:730.50 KB
- 文档页数:51
在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
离散数学计数定律离散数学是指研究离散化对象及其性质的数学分支。
计数是离散数学的一个重要领域,涉及了各种计算和统计问题。
在离散数学计数定律中,有一些重要的原理和定理被广泛应用于计算和统计的各个领域。
1. 乘法规则:若一个计算过程分为k个相互独立的部分,且第一部分有n1种不同的方式,第二部分有n2种不同的方式,以此类推,第k部分有nk种不同的方式,则整个计算过程有n1*n2*...*nk种不同的方式。
2. 加法规则:若一个计算过程分为k个不相交的部分,且第一部分有n1种不同的方式,第二部分有n2种不同的方式,以此类推,第k部分有nk种不同的方式,则整个计算过程有n1+n2+...+nk种不同的方式。
3. 排列:从n个元素中选取r个元素进行排列,有P(n,r) = n! / (n-r)! 种不同的排列方式。
4. 组合:从n个元素中选取r个元素进行组合,有C(n,r) = n! / (r! * (n-r)!) 种不同的组合方式。
5. 二项式定理:对于任意实数a和b,以及任意非负整数n,有(a+b)^n =C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n。
6. 完全排列原理:对于一个元素集合S,若n个元素有ni种不同的排列方式(i从1到k),则这些元素的完全排列方式共有n1! * n2! * ... * nk! 种。
7. 抽屉原理:若n+1个物体放入n个抽屉中,至少有一个抽屉中会放有两个或更多物体。
8. 鸽笼原理:若将n+1只鸽子放入n个鸽笼中,那么至少会有一个鸽笼中放有两只或更多的鸽子。
这些离散数学计数定律在不同领域的计算和统计问题中起着重要的作用,能够帮助解决各种复杂的计数和排列组合问题。
习题与解答1. 将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
(2) 取论域为所有物质的集合。
令x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
(3) 论域和谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
(4) 取论域为所有事物的集合。
令x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀(5)论域和谓词与(4)同。
“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
2. 取论域为正整数集,用函数+(加法),•(乘法)和谓词<,=将下列命题符号化:(1) 没有既是奇数,又是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =•∃。
x x J :)(是奇数,)(x J 可表示为)2(x v v =•⌝∃。
习题 2.11.将下列命题符号化。
(1) 4不是奇数。
解:设A(x):x是奇数。
a:4。
“4不是奇数。
”符号化为:¬A(a)(2) 2是偶数且是质数。
解:设A(x):x是偶数。
B(x):x是质数。
a:2。
“2是偶数且是质数。
”符号化为:A(a)∧B(a)(3) 老王是山东人或河北人。
解:设A(x):x是山东人。
B(x):x是河北人。
a:老王。
“老王是山东人或河北人。
”符号化为:A(a)∨B(a)(4) 2与3都是偶数。
解:设A(x):x是偶数。
a:2,b:3。
“2与3都是偶数。
”符号化为:A(a)∧A(b)(5) 5大于3。
解:设G(x,y):x大于y。
a:5。
b:3。
“5大于3。
”符号化为:G(a,b)(6) 若m是奇数,则2m不是奇数。
解:设A(x):x是奇数。
a:m。
b:2m。
“若m是奇数,则2m不是奇数。
”符号化为:A(a)→A(b)(7) 直线A平行于直线B当且仅当直线A不相交于直线B。
解:设C(x,y):直线x平行于直线y。
设D(x,y):直线x相交于直线y。
a:直线A。
b:直线B。
“直线A平行于直线B当且仅当直线A不相交于直线B。
”符号化为:C(a,b)↔¬D(x,y)(8) 小王既聪明又用功,但身体不好。
解:设A(x):x聪明。
B(x):x用功。
C(x):x身体好。
a:小王。
“小王既聪明又用功,但身体不好。
”符号化为:A(a)∧B(a)∧¬C(a)(9) 秦岭隔开了渭水和汉水。
解:设A(x,y,z):x隔开了y和z。
a:秦岭。
b:渭水。
c:汉水。
“秦岭隔开了渭水和汉水。
”符号化为:A(a,b,c)(10) 除非小李是东北人,否则她一定怕冷。
解:设A(x):x是东北人。
B(x):x怕冷。
a:小李。
“除非小李是东北人,否则她一定怕冷。
”符号化为:B(a)→¬A(a)2.将下列命题符号化。
并讨论它们的真值。
(1) 有些实数是有理数。
解:设R(x):x是实数。
离散数学及其应用第三版第二章计数问题课后答案1、从3点到6点,分针旋转了多少度?[单选题] *90°960°-1080°(正确答案)-90°2、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、1203、已知5m-2n-3=0,则2??÷22?的值为( ) [单选题] *A. 2B. 0C. 4D. 8(正确答案)4、7.已知点A(-2,y1),B(3,y2)在一次函数y=-x+b的图象上,则( ) [单选题]* A.y1 > y2(正确答案)B.y1 < y2C.y1 ≤y2D.y1 ≥y25、若3x+4y-5=0,则8?·16?的值是( ) [单选题] *A. 64B. 8C. 16D. 32(正确答案)6、16.若过多边形的每一个顶点只有6条对角线,则这个多边形是()[单选题] * A.六边形B.八边形C.九边形(正确答案)D.十边形7、计算-(a-b)3(b-a)2的结果为( ) [单选题] *A. -(b-a)?B. -(b+a)?C. (a-b)?D. (b-a)?(正确答案)8、函数式?的化简结果是()[单选题] *A.sinα-cosαB.±(sinα-cosα)(正确答案)C.sinα·cosαD.cosα-sinα9、8.一个面积为120的矩形苗圃,它的长比宽多2米,苗圃长是()[单选题] *A 10B 12(正确答案)C 13D 1410、函数y=kx(k是不为0的常数)是()。
[单选题] *正比例函数(正确答案)一次函数反比例函数二次函数函数11、4、已知直角三角形的直角边边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()[单选题] *A、6B、10(正确答案)C、8D、212、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] *A.1(正确答案)B.4C.-3D.313、27.下列各函数中,奇函数的是()[单选题] *A. y=x^(-4)B. y=x^(-3)(正确答案)C .y=x^4D. y=x^(2/3)14、-120°用弧度制表示为()[单选题] *-2π/3(正确答案)2π/3-π/3-2π/515、函数y= 的最小正周期是()[单选题] *A、B、(正确答案)C、2D、416、下列说法中,正确的是()[单选题] *A、第一象限角是锐角B、第一象限角是锐角(正确答案)C、小于90°的角是锐角D、第一象限的角不可能是钝角17、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] * A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)18、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)19、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)20、7.把点平移到点,平移方式正确的为()[单选题] *A.先向左平移3个单位长度,再向下平移2个单位长度B.先向左平移3个单位长度,再向上平移2个单位长度C.先向右平移3个单位长度,再向下平移2个单位长度D.先向右平移3个单位长度,再向上平移2个单位长度(正确答案)21、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案)C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.22、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)23、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案)D.有最小的自然数,也有最小的整数24、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35525、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ26、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条27、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、428、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)29、x3??(m为正整数)可写成( ) [单选题] *A. x3+x?B. x3-x?C. x3·x?(正确答案)D. x3?30、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 12。