详解N沟道MOS管和P沟道MOS管
- 格式:docx
- 大小:731.06 KB
- 文档页数:11
p沟道n沟道mos管开启条件p沟道n沟道MOS管开启条件一、引言p沟道n沟道MOS管是一种常见的电子器件,广泛应用于电路设计中。
了解p沟道n沟道MOS管的开启条件对于电路设计以及电子工程师来说非常重要。
本文将详细介绍p沟道n沟道MOS管的开启条件及其相关知识。
二、p沟道MOS管的开启条件p沟道MOS管的开启条件可以简单概括为:当栅极电压大于沟道电压阈值时,p沟道MOS管才能正常工作。
1. 栅极电压栅极电压是指施加在p沟道MOS管栅极上的电压。
在正常工作状态下,栅极电压需要大于沟道电压阈值。
当栅极电压大于沟道电压阈值时,栅极电场就能够控制沟道中的载流子浓度,从而实现MOS 管的正常导通。
2. 沟道电压阈值沟道电压阈值是指p沟道MOS管的沟道和栅极之间的电压差。
当栅极电压高于沟道电压阈值时,沟道中的载流子浓度得以控制,从而实现MOS管的导通。
沟道电压阈值的大小决定了MOS管的导通特性。
3. 导通状态当p沟道MOS管的栅极电压大于沟道电压阈值时,MOS管处于导通状态。
此时,电流可以从源极流向漏极,MOS管可以正常工作。
而当栅极电压小于沟道电压阈值时,MOS管处于截止状态,电流无法通过MOS管。
三、n沟道MOS管的开启条件n沟道MOS管的开启条件与p沟道MOS管类似,也是需要栅极电压大于沟道电压阈值才能正常工作。
1. 栅极电压n沟道MOS管的栅极电压需要大于沟道电压阈值,才能实现对沟道中的载流子浓度的控制,从而导通。
2. 沟道电压阈值n沟道MOS管的沟道电压阈值与p沟道MOS管相反,即当栅极电压高于沟道电压阈值时,n沟道MOS管导通。
沟道电压阈值的大小同样影响MOS管的导通特性。
3. 导通状态n沟道MOS管的导通状态与p沟道MOS管相反,当栅极电压大于沟道电压阈值时,MOS管导通;当栅极电压小于沟道电压阈值时,MOS管截止。
四、p沟道和n沟道MOS管的比较p沟道MOS管和n沟道MOS管在开启条件上存在一些区别。
p沟道mos管和n沟道mos管应用电路摘要:一、前言二、P 沟道MOS 管和N 沟道MOS 管的定义与区别1.P 沟道MOS 管2.N 沟道MOS 管三、P 沟道MOS 管和N 沟道MOS 管应用电路1.P 沟道MOS 管应用电路2.N 沟道MOS 管应用电路四、结论正文:一、前言在电子电路中,MOS 管(金属- 氧化物- 半导体场效应晶体管)是一种广泛应用的器件,其工作原理是利用栅源电压来改变漏源电流。
根据沟道类型,MOS 管可以分为P 沟道和N 沟道两种。
本文将详细介绍这两种沟道类型的MOS 管及其应用电路。
二、P 沟道MOS 管和N 沟道MOS 管的定义与区别1.P 沟道MOS 管P 沟道MOS 管的沟道是P 型半导体,源极和漏极是N 型半导体,栅极是金属。
当栅源电压为正时,P 型半导体中的空穴浓度增加,从而导致漏源电流增大;当栅源电压为负时,空穴浓度减小,漏源电流减小。
2.N 沟道MOS 管沟道MOS 管的沟道是N 型半导体,源极和漏极是P 型半导体,栅极是金属。
当栅源电压为正时,N 型半导体中的电子浓度增加,从而导致漏源电流增大;当栅源电压为负时,电子浓度减小,漏源电流减小。
三、P 沟道MOS 管和N 沟道MOS 管应用电路1.P 沟道MOS 管应用电路P 沟道MOS 管主要用于低电压、低电流的电路,如逻辑门、寄存器等数字电路。
在实际应用中,P 沟道MOS 管具有较低的输入阻抗和较低的噪声性能,适用于对噪声敏感的电路。
2.N 沟道MOS 管应用电路沟道MOS 管主要用于高电压、高电流的电路,如功率放大器、开关电源等模拟电路。
在实际应用中,N 沟道MOS 管具有较高的输出阻抗和较高的电流驱动能力,适用于需要大电流驱动的电路。
四、结论总的来说,P 沟道MOS 管和N 沟道MOS 管在应用电路中各有优劣。
P 沟道MOS 管适用于低电压、低电流的数字电路,具有较低的输入阻抗和噪声性能;N 沟道MOS 管适用于高电压、高电流的模拟电路,具有较高的输出阻抗和电流驱动能力。
N沟道和P沟道MOS管工作原理N沟道MOSFET(NMOS)的工作原理是利用负电压加在接近沟道区域的电极上,形成一个负电荷区域,使电子在沟道内移动。
当NMOS的栅极电压高于沟道电压时,电子将被吸引到NMOS的沟道区域。
这将导致沟道中的电子数量增加,形成一个导电通道。
电子通过沟道流动时,NMOS处于导电状态,可将电流从源极到漏极引导。
当栅极电压低于沟道电压时,电子无法通过沟道流动,NMOS处于截止状态。
P沟道MOSFET(PMOS)的工作原理则相反。
利用正电压加在接近沟道区域的电极上,形成一个正电荷区域,吸引电子从沟道区域离开。
当PMOS的栅极电压低于沟道电压时,电子将被吸引到PMOS的沟道区域。
这将导致沟道中的电子数量减少,形成一个导电通道。
电子通过沟道流动时,PMOS处于导电状态,可将电流从漏极到源极引导。
当栅极电压高于沟道电压时,电子无法通过沟道流动,PMOS处于截止状态。
NMOS和PMOS的主要区别在于沟道区域的掺杂类型。
NMOS的沟道区域是正掺杂的P型半导体,而PMOS的沟道区域是负掺杂的N型半导体。
这种不同的掺杂类型导致了不同的工作原理和电子流动方式。
MOSFET是现代集成电路中最常用的晶体管结构之一、它具有高度的集成度、低功耗和控制灵活性,广泛应用于数字电路和模拟电路中。
在数字电路中,NMOS和PMOS通常用于构建逻辑门电路,如与门、或门和非门。
在模拟电路中,MOSFET经常用作可变电阻、放大器和开关等各种功能的基本构建单元。
总之,N沟道和P沟道MOSFET的工作原理是通过施加电场来控制沟道区域的电子流动,从而实现电流的导通和截止。
这种电场效应的工作方式使得MOSFET能够在集成电路中发挥重要的作用。
n沟道耗尽型MOS管与p沟道增强型MOS电源开关1. 介绍MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关器件。
其中,n沟道耗尽型MOS管和p沟道增强型MOS管分别代表着不同的工作原理和特性。
本文将对这两种MOS管进行深入剖析,并探讨它们在电源开关中的应用。
2. n沟道耗尽型MOS管n沟道耗尽型MOS管又称为n沟道MOSFET,是一种场效应晶体管。
它的主要特点是当栅极施加的电压为0时,n沟道MOSFET处于导通状态。
而且,其导通电阻随着栅极电压的增加而减小。
这意味着n沟道MOSFET可以在较低的栅极-源极电压下实现较大的导通电流。
3. p沟道增强型MOS管p沟道增强型MOS管是另一种常见的MOSFET器件。
与n沟道MOSFET不同的是,p沟道MOSFET需要在栅极-源极间施加正电压以实现导通。
在零栅极电压下,p沟道MOSFET处于截止状态。
另外,与n沟道MOSFET相比,p沟道MOSFET的导通特性更适合用于低功率应用。
4. 两者在电源开关中的应用在电源开关电路中,n沟道MOSFET通常用于高侧开关,而p沟道MOSFET则常用于低侧开关。
这是因为n沟道MOSFET的导通特性使得其更适合处理高电压,而p沟道MOSFET则更适合低电压应用。
通过合理搭配n沟道MOSFET和p沟道MOSFET,可以实现高效率、低损耗的电源开关设计。
5. 个人观点和总结就我个人而言,我更倾向于在电源开关电路中使用n沟道MOSFET。
因为在大部分应用中,我更关注高压、大电流的处理能力。
当然,对于某些特定的低功率应用,p沟道MOSFET也有其独特的优势。
在实际设计中,我们应根据具体的应用场景和要求来选择合适的MOSFET器件。
n沟道耗尽型MOS管和p沟道增强型MOS电源开关在电子电路设计中有着广泛的应用。
了解它们的特性和特点,对于合理选择和应用MOSFET器件至关重要。
希望本文对您有所启发,并对MOSFET器件有更深入的理解。
MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。
我们常用的是NMOS,因为其导通电阻小,且容易制造。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。
这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
1.导通特性NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
2.MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
选择导通电阻小的MOS管会减小导通损耗。
现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。
MOS在导通和截止的时候,一定不是在瞬间完成的。
MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。
通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。
导通瞬间电压和电流的乘积很大,造成的损失也就很大。
缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。
这两种办法都可以减小开关损失。
3.MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。
这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。
对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。
如何区分N沟道P沟道MOS管和NPN PNP三极管献给那些还没有去迅维学习的小小白们首先大家先记住“N 黑负”、“ P 红正”,即可以理解为“N-负极,黑色的”,“P-正极,红色的” 。
大家应该都知道,二极管的特性是正向导通反向截止,所以在测量二极管的时候呢,用万用表的二极管档测,红表笔要接二极管的正极,黑表笔要接二极管的负极。
那么下面就要说说MOS管了,店里的学徒一直问我MOS 管的结构是什么样子的,我给他们解释,他们似懂非懂的,我就话了个图给他们看,看完图后,他们清晰明了的明白了,献上此图关于怎么区分是N沟道还是P沟道的,相信有很多小小白还是一头雾水。
下面请大家记住,我们要以MOS管的D 极来确定MOS管到底是N沟道还是P沟道,如上图所示,其实MOS管里面就是有一个二极管,我们称之为二极体,大家可以把他用作二极管来理解。
P沟道MOS管中的二极体的正极是MOS管的D极,刚刚我们说过了“P红正”,MOS管的D极是二极体的正极,即“P极” ,所以我们可以知道此MOS管为P沟道MOS管。
相反的,MOS管的D极为二极体的负极即“N极” 所以是N沟道MOS管。
这些大家如果能够明白了,那么测量就是易如反掌了,由二极管的正向导通反向截止原理来测量。
黑笔测MOS管的D极,红表笔测MOS管的S极有数值的话(300--800之间)那么即为N沟道,反测则没有数值(1)或无穷大,二极体值在300--800之间为有效。
因为MOS管在现在笔记本上作为上下管所以发热量有点高,所以人们把它做成了8脚MOS管以便于散热。
这个8脚的MOS管怎么来区分它是P沟道还是N沟道MOS管呢?再看上图,8脚MOS管的1--3脚为S极,4脚为G极,5--8脚为G极。
记住这个,这样测量就和上面所述的一样了。
关于三极管呢,不讲多少了,把图放出来大家如果明白上面的相信一看图便知道怎么来区分三极管是NPN 还是PNP了。
当然三极管的测量大家就别测了,因为现在的三极管都是数字三极管,用万用表是测量不出来的。
N沟道和P沟道MOS管工作原理MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常用的半导体器件,由金属-氧化物-半导体结构组成。
其中,N沟道MOS管和P沟道MOS管是两种常用的MOS管类型。
它们的工作原理略有不同,下面将详细介绍。
一、N沟道MOS管(N-Channel MOSFET)工作原理:N沟道MOS管的基本结构由N型衬底、P型衬底上的N型沟道、P型栅极和绝缘层(通常为氧化硅SiO2)组成。
当沟道中间层没有加电压时,P型沟道区域导电能力强于N型衬底区域,因此MOS管处于截止状态。
当P型栅极施加正向电压时,沟道区域下方的内电场将使P型区域带有正电荷,形成沟道通过,MOS管进入导通状态。
这种情况下,栅极-源极之间的电压被称为V_DS,栅极-沟道之间的电压被称为V_GS。
N沟道MOS管的工作原理是基于场效应。
当栅极-沟道电压(V_GS)增大时,场效应电压将增大,导致沟道区域的电荷密度增加,电流也会随之增加。
当V_GS增大到一定值时,沟道的电阻下降到很小,电流将接近饱和状态。
因此,N沟道MOS管可以被视为可以控制电流的开关。
二、P沟道MOS管(P-Channel MOSFET)工作原理:P沟道MOS管的基本结构与N沟道MOS管类似,但其沟道区域是P型半导体,而栅极是N型半导体。
与N沟道MOS管相比,P沟道MOS管的工作原理相反。
当P沟道MOS管的栅极电压为零时,由于N型沟道和P型衬底之间的PN结的反向偏置,形成一个截止区。
当P型栅极施加负向电压时,沟道区域的电荷会被压缩,在栅极电压达到一定值时,PN结会被反向击穿,沟道将打开,P沟道MOS管进入导通状态。
与N沟道MOS管类似,P沟道MOS管也是基于场效应工作的。
当栅极-沟道电压(V_GS)减小时,沟道中的电荷密度减小,导致电流减小。
当V_GS减小到一定值时,沟道关闭,电流为零。
因此,P沟道MOS管可以被视为可以控制电流的开关。
N沟道、P沟道MOS管基本原理与应用案例一、N-MOS管和P-MOS管的对比二、N-MOS的开关条件N-MOS管的导通调节是G极与S极中间的电压差超过阈值时,D极和S极导通。
在实际的使用中,将控制(信号)接到G极,S极接在GND,从而达到控制N-MOS管的开和关的效果,在D极和S极导通后,导通电阻Rds(on)极小,一般是几十毫欧级,(电流)流通后,形成的压降很小。
三、N-MOS的应用3.1防止(电源)接反的(保护电路)下面就是一个应用这个特性做的一个防止电源接反的保护电路,这样应用要比使用(二极管)好很多,如果直接使用二极管,会有约0.7V的压降。
(仿真)电路如下:N-MOS管作为防止电路反接方案中,VCC=5V的电源加在10K 阻性负载上,电压表、电流表分别测量,记录值是5V、500uA;切换Key开关,(模拟)电源反接时,测得记录值是-49.554mV、-4.955uA。
3.2电平转换电路Sig1,Sig2为两个信号端,VDD和VCC分别是3.3V和5.0V电平信号的高电压。
另外限制条件为:1,VDD以下截图是在(Multisim)中仿真效果,利用开关提供信号。
四、P-MOS开关条件P-MOS管的导通调节是G极与S极中间的电压差低于阈值时,S 极和D极导通。
在实际的使用中,将控制信号接到G极,S极接在VCC,从而达到控制P-MOS管的开和关的效果,在S极和D极导通后,导通电阻Rds(on)极小,一般是几十毫欧级,电流流通后,形成的压降很小。
五、P-MOS的应用5.1电源通断控制P-MOS管的通断控制,其实就是控制其Vgs的电压,从而达到控制电源的目的。
Key开关闭合前,P-MOS管输出电压0.0164V,闭合后,P-MOS 管输出电压5V。
但在实际电路中,一般都用(MCU)的GPIO代替Key开关来控制,同时MCU高电平时3.3V,因此GPIO输出控制信号时需要使用三极管,在这里三极管的选择也有区别。
N沟道和P沟道MOS管工作原理首先,我们来看N沟道MOS管的工作原理。
N沟道MOS管的基本结构包括p型基底、n+型源和漏,以及上面覆盖的一层厚氧化硅(SiO2)绝缘层。
当没有电压施加在栅极上时,N沟道MOS管是关闭状态。
在这种情况下,沟道区域中没有电子流动,因为沟道处于p型基底的截断状态。
接下来,当一个正电压施加在栅极上时,栅极和沟道之间的氧化硅绝缘层将形成一个电场。
这个电场将吸引p型基底下面的正电荷,使其靠近氧化硅绝缘层。
在较高的电场强度下,p型基底中的正电荷会被吸引到足够接近氧化硅绝缘层的位置。
这样,p型基底下方的N沟道就会形成并连接源和漏。
N沟道中的电子可以随后通过N沟道从源到漏流动。
因此,当电压施加在栅极上时,N沟道MOS管处于导通状态。
然而,当电压施加在栅极上并且达到一定上限后,N沟道MOS管会进入饱和区。
在这种情况下,N沟道中的电流将达到最大值,即漏极电流。
继续增加栅极电压将不会增加电流。
在饱和区,N沟道MOS管可以被看作是一个电流控制器件,其输出电流与栅极电压和沟道长度/宽度比例相关。
接下来我们来看P沟道MOS管的工作原理。
P沟道MOS管和N沟道MOS管的结构相似,差异在于p型基底和n+型源和漏。
在没有电压施加在栅极上时,P沟道MOS管也是关闭状态。
沟道处于n型基底的截断状态,没有电流流动。
当一个负电压施加在栅极上时,栅极和p型基底之间的氧化硅绝缘层形成一个电场。
这个电场将吸引n型基底下面的负电荷,使其靠近氧化硅绝缘层。
在较高的电场强度下,n型基底中的负电荷会被吸引到足够接近氧化硅绝缘层的位置。
这样,n型基底下方的P沟道就会形成并连接源和漏。
P沟道中的空穴可以通过P沟道从源到漏流动。
因此,当电压施加在栅极上时,P沟道MOS管处于导通状态。
同样地,当电压施加在栅极上并且达到一定上限后,P沟道MOS管会进入饱和区。
在这种情况下,P沟道中的电流将达到最大值,并且进一步增加栅极电压将不会增加电流。
N沟道P沟道MOS管基本原理与应用案例
1.N沟道、P沟道MOS管的基本原理
在MOS管中,根据材料性质的不同,可以分为两种类型:N沟道MOS 管和P沟道MOS管。
N沟道MOS管的基本原理如下:
-MOS管的材料中,P型多晶硅为基底,上面覆盖着一个绝缘层(通常为二氧化硅)和一个金属层(通常为铝)。
-绝缘层上形成一个P型沟道,当沟道中下加上适当的负电压时,形成了一个导电通道。
-当导通通道存在时,MOS管的漏-源之间可以通过电流流动。
P沟道MOS管的基本原理如下:
-P沟道MOS管的基底是N型硅,绝缘层和金属层的结构与N沟道MOS 管相似。
-绝缘层上形成一个N型沟道,当沟道中下加上适当的正电压时,形成了一个导电通道。
-当导通通道存在时,MOS管的漏-源之间可以通过电流流动。
2.N沟道、P沟道MOS管的应用案例
(1)CMOS逻辑电路
CMOS逻辑电路有以下几个优势:
-低功耗:CMOS逻辑电路在工作时只消耗非常少的电流,功耗很低。
-高集成度:CMOS逻辑电路可以实现非常高的集成度,因为它们的工作电压和功耗都很低。
-高速度:CMOS逻辑电路的切换速度非常快,适用于高速数字系统。
(2)模拟电路中的放大器
例如,N沟道MOS管可以用作电压放大器,当输入电压施加在栅极上时,输出电压可以由漏-源间的电流决定。
(3)可编程逻辑器件
在这些器件中,MOS管的导通和截止状态可以被程序控制,通过适当的电路连接,可以实现不同的逻辑功能。
总之,N沟道、P沟道MOS管是一种重要的电子器件,具有广泛的应用。
在数字电路、模拟电路和可编程逻辑器件中都可以找到它们的身影。
先讲讲MOS/CMOS集成电路MOS集成电路特点:制造工艺比较简单、成品率较高、功耗低、组成的逻辑电路比较简单,集成度高、抗干扰能力强,特别适合于大规模集成电路。
MOS集成电路包括:NMOS管组成的NMOS电路、PMOS管组成的PMOS电路及由NMOS和PMOS 两种管子组成的互补MOS电路,即CMOS电路。
PMOS门电路与NMOS电路的原理完全相同,只是电源极性相反而已。
数字电路中MOS集成电路所使用的MOS管均为增强型管子,负载常用MOS管作为有源负载,这样不仅节省了硅片面积,而且简化了工艺利于大规模集成。
常用的符号如图1所示。
N沟MOS晶体管金属-氧化物-半导体(Metal-Oxide-SemIConductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。
MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS集成电路。
由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。
n沟道增强型MOS 管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。
n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。
NMOS集成电路是N沟道MOS电路,NMOS集成电路的输入阻抗很高,基本上不需要吸收电流,因此,CMOS与NMOS集成电路连接时不必考虑电流的负载问题。
NMOS集成电路大多采用单组正电源供电,并且以5V为多。
CMOS集成电路只要选用与NMOS集成电路相同的电源,就可与NMOS集成电路直接连接。
不过,从NMOS到CMOS直接连接时,由于NMOS输出的高电平低于CMOS集成电路的输入高电平,因而需要使用一个(电位)上拉电阻R,R的取值一般选用2~100KΩ。
N沟道增强型MOS管的结构在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。
然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。
在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。
MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。
它的栅极与其它电极间是绝缘的。
图(a)、(b)分别是它的结构示意图和代表符号。
代表符号中的箭头方向表示由P(衬底)指向N(沟道)。
P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。
N沟道增强型MOS管的工作原理(1)vGS对iD及沟道的控制作用① vGS=0 的情况从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。
当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。
② vGS>0 的情况若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。
电场方向垂直于半导体表面的由栅极指向衬底的电场。
这个电场能排斥空穴而吸引电子。
排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。
吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。
(2)导电沟道的形成:当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。
vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。
vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。
开始形成沟道时的栅——源极电压称为开启电压,用VT表示。
上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。
只有当vGS≥VT时,才有沟道形成。
这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。
沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。
vDS对iD的影响如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。
漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。
但当vDS较小(vDS<vGS–VT)时,它对沟道的影响不大,这时只要vGS一定,沟道电阻几乎也是一定的,所以iD随vDS近似呈线性变化。
随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。
再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。
由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。
N沟道增强型MOS管的特性曲线、电流方程及参数(1)特性曲线和电流方程1)输出特性曲线N沟道增强型MOS管的输出特性曲线如图1(a)所示。
与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。
2)转移特性曲线转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时iD几乎不随vDS而变化,即不同的vDS所对应的转移特性曲线几乎是重合的,所以可用vDS大于某一数值(vDS>vGS-VT)后的一条转移特性曲线代替饱和区的所有转移特性曲线。
3)iD与vGS的近似关系与结型场效应管相类似。
在饱和区内,iD与vGS的近似关系式为式中IDO是vGS=2VT时的漏极电流iD。
(2)参数MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压VP ,而用开启电压VT表征管子的特性。
N沟道耗尽型MOS管的基本结构(1)结构:N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。
(2)区别:耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。
(3)原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P 型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。
如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。
反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。
当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。
沟道消失时的栅-源电压称为夹断电压,仍用VP表示。
与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。
而后者在vGS=0,vGS>0,VP<vGS<0的情况下均能实现对iD的控制,而且仍能保持栅——源极间有很大的绝缘电阻,使栅极电流为零。
这是耗尽型MOS管的一个重要特点。
图(b)、(c)分别是N沟道和P沟道耗尽型MOS管的代表符号。
(4)电流方程:在饱和区内,耗尽型MOS管的电流方程与结型场效应管的电流方程相同,即:各种场效应管特性比较P沟MOS晶体管金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类,P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,柵极上加有足够的正电压(源极接地)时,柵极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。
改变栅压可以改变沟道中的电子密度,从而改变沟道的电阻。
这种MOS场效应晶体管称为P沟道增强型场效应晶体管。
如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。
这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。
统称为PMOS晶体管。
P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。
此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。
它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。
PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。
只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。
PMOS集成电路是一种适合在低速、低频领域内应用的器件。
PMOS集成电路采用-24V电压供电。
如图5所示的CMOS-PMOS接口电路采用两种电源供电。
采用直接接口方式,一般CMOS的电源电压选择在10~12V就能满足PMOS对输入电平的要求。
MOS场效应晶体管具有很高的输入阻抗,在电路中便于直接耦合,容易制成规模大的集成电路。
各种场效应管特性比较开关电源工作原理及电路图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。