半导体放电管维持电流的研究
- 格式:pdf
- 大小:168.10 KB
- 文档页数:2
放电管工作原理
放电管是一种通过放电产生光或电的装置,它的工作原理主要是通过控制电流和电压来实现放电效果。
放电管内部通常包含两个电极,即正极和负极。
当外部施加电压时,电子会从负极流向正极,形成电流。
在正常情况下,电子在电流通过的过程中并不发生放电现象。
然而,当电压超过放电管的击穿电压时,放电现象就会发生。
这是因为当电压达到一定程度时,电子会获得足够的能量突破正极与负极之间的电荷屏障,从而产生能量释放的现象。
这个过程就是放电。
在放电过程中,放电管会产生巨大的电流和电压峰值。
这些能量以光的形式释放出来,形成明亮而稳定的光点或光弧。
典型的例子是氖灯、氙灯和闪光灯等设备中使用的放电管。
总的来说,放电管的工作原理是通过对电流和电压施加控制,超过击穿电压时,电子获得能量,并以光的形式释放出来。
这种现象在放电管中得到充分利用,使其成为一种重要的光电转换装置。
放电管特性及选用吴清海放电管的分类放电管要紧分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管要紧有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两头的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,能够刹时通过较大的电流,气体放电管击穿后的维持电压能够低到30V之内。
气体放电管同流量大,但动作电压较难操纵。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两头的电压维持在很低(约20V以下)时就能够够维持其在低阻高通状态,起到吸收浪涌爱惜后级设备的作用。
半导体放电管的爱惜机理和应用方式和气体放电管相同。
半导体放电管动作电压操纵精准,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,因此放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳固残压低,爱惜成效较好;耐流能力较大;在利用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔必然距离的两个电极组成;其电气性能要紧取决于气体压力,气体种类,电极距离和电极材料;一样密封在放电管中的气体为高纯度的惰性气体。
放电管要紧由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到必然能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进进程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦知足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,现在放电电压称为击穿电压Vs。
半导体放电管和tvs管1.引言1.1 概述半导体放电管和TVS管是电子领域中常见的两种保护元件,用于保护电路免受过电压和过电流的损害。
半导体放电管(GDT)是一种可触发的开关装置,其主要工作原理是通过内部的气体放电使电路中的过电压得以释放。
TVS管(Transient Voltage Suppressor)也是一种保护元件,其主要功能是在电路中检测到过电压时迅速导通并将过电压引到接地,以保护其他元件不受损坏。
在现代电子产品中,由于电路工作时常会受到突发的电压波动或电磁干扰,半导体放电管和TVS管的使用变得至关重要。
半导体放电管可以快速响应和释放过电压,有效地保护电路和设备;而TVS管则起到了防止电压超限和过电流进入电路的作用。
半导体放电管和TVS管的应用领域非常广泛。
在通信设备、电力设备、汽车电子、工业自动化等领域,半导体放电管和TVS管被广泛应用于各种电路保护和过电压抑制的场景。
它们可以有效地保护电路中的其他元件,提高电路的稳定性和可靠性。
尽管半导体放电管和TVS管在过电压保护方面有许多相似之处,但它们也存在一些不同之处。
半导体放电管通常具有更高的电流和功耗承受能力,适用于工程领域的大功率电路保护;而TVS管通常具有更快的响应速度和更低的电压保护等级,适用于对过电压反应要求更高的应用场景。
综上所述,半导体放电管和TVS管是电子领域中重要的保护元件,它们在保护电路和设备免受过电压和过电流的侵害方面发挥着重要作用。
随着科技的进步和电子产品的发展,对过电压保护的需求也会越来越大,这使得半导体放电管和TVS管的应用前景更加广阔。
1.2 文章结构文章结构部分的内容应该包括对整篇文章的框架和内容安排的介绍。
可以按照以下的方式来编写文章结构部分的内容:本文将围绕着半导体放电管和TVS管展开讨论。
首先,在引言部分,我们将对本文的概述进行介绍,包括半导体放电管和TVS管的基本概念和作用。
接下来,我们将说明本文的结构,具体列出各个章节的主要内容和目的。
实验3 半导体二极管伏安特性的研究世界上的物质种类繁多,但就其导电性能来说,大体上可分为导体、绝缘体和半导体三类。
某些物质,如硅、锗等,它们的导电性能介于导体和绝缘体之间,被称为半导体。
半导体之所以引起人们极大的兴趣,原因并不在于它具有一定的导电能力,而在于它具有许多独特的性质。
同一块半导体材料,它的导电能力在不同的条件下会有非常大的差别,比如,在很纯的半导体中掺入微量的其他杂质,它的导电性能将有成千上万倍地增加,并且可以根据掺入杂质的多少来控制半导体的导电性能。
人们正是利用半导体的这种独特的性质做出了各种各样的半导体器件。
本实验通过对常用的半导体器件—二极管特性的研究,了解PN结的特性、结构和工作原理,并测量二极管的部分参数。
【实验目的】1、了解PN结产生的机理和它的作用。
2、学习测量二极管伏安特性曲线的方法。
3、通过实验,加深对二极管单向导电特性的理解。
【仪器用具】HG61303型数字直流稳压电源、GDM-8145型数字万用表、滑线变阻器、FBZX21型电阻箱、C31-V型电压表、C31-A型电流表、FB715型物理设计性实验装置、可调电阻及导线若干、普通二极管、发光二极管、稳压二极管等【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。
一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1的直线a。
至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1的曲线b、c。
伏安法的主要用途是测量研究非线性元件的特性。
半导体放电管检测要求及测试方法1 本要求遵循的依据1.1YD/T940—1999《通信设备过电压保护用半导体管》1.2YD/T694—1999《总配线架》1.3GB/T2828.1—2003/ISO 2859—1:1999《计数抽样检验程序》2 测试前准备及测试环境条件2.1对测试设备进行校验,检查是否正常,正常后才能使用。
2.2在标准大气条件下进行试验2.2.1温度:15~35℃2.2.2相对湿度:45%~75%2.2.3大气压力:86~106Kpa所有的电测量以及测量之后的恢复应在以下大气条件下进行:温度:25±5℃相对湿度:45%~75%大气压力:86~106Kpa在进行测量前应使半导体管温度与测量环境温度达到平衡,测量过程的环境温度应记录在试验报告中。
2.3按GB/T2828.1—2003《计数抽样检验程序》的规定。
按一定抽样正常方案,一般检查水平Ⅱ,抽取一定数量的样本。
3 检测要求和测试方法3.1外形检查3.1.1要求放电管两头封口平直无歪斜,外形整洁,无污染、腐蚀和其他多余物,封装无破损、裂纹、伤痕、引出线不短裂、不松动。
3.1.2金属镀层不起皮、不脱离、不生锈、不变色。
3.1.3外形尺寸公差符合SJ1782—81中4级公差,即公称尺寸>3—6,其公差为±0.1,公称尺寸>6—10,其中公差为±0.12,合格率要达到≥97.5%。
3.1.4产品标志应清晰耐久3.1.5包装箱应标记生产厂家、产品名称、型号、标准号、重量及生产日期或批号,且包装材料应保持干燥、整洁、对产品无腐蚀作用3.2直流击穿电压测试3.2.1用XJ4810半导体管特性图示仪对经过上一项目测试合格的放电管进行初始检测,用正极性测试后进行反极性测试,正、反极性各测2次,每次测试间隔时间为1~2min。
3.2.1半导体管的最高限制电压应不大于表1给出的极限值,试验电流应在1A~10A之间试验是加在半导体管上的电流变化率应≤30A/μs。
10・激光器件与元件・《激光杂志》2003年第24卷第5期LASER JOURNA L (V ol. 24. N o. 5. 2003小功率半导体激光二极管的稳定控制及其在原子实验中的应用孙番典杨世琪刘琼发(华南师范大学物理系, 广州510631提要:介绍一种高稳定的半导体激光二极管恒温、稳流控制方式。
使用该方式电路, 10-5, 温度波动优于10-4。
并介绍高稳定半导体二极管激光在原子超精细跃迁线形吸收谱和塞曼相干共振谱观测中的应用。
关键词:半导体激光二极管, 恒温稳流, 线性吸收谱线, 塞曼相干共振谱线A stabilite control method for low pow er semiconductor laser it ’s experimentsSun Fandian Yang Shiqi (S outh China N ormal ,GAbstract :Introduceda set of high stable control circuits for case of iconductor laser diode. Using the circuits ,the fluctu 2ation of injection current is 10-5and the fluctuation of perature better 10the room tem perature. An application of the diode laser in atom ic experiments als o be introduced.K ey w ords :sem,tem ,linear abs orb spectrum line ,Z eeman coherent res onance spectrum line1引言Ξ值, 可置半导体激光二极管工作于不同的注入电流值。
将可调基准电压与流经半导体激光二极管的注入电流回路的取样放大信号电压一起输入比例放大器, 由比例放大器的输出控制场效应调整管的门电极(栅极。
半导体放电管TSS的介绍以及应用领域概述:半导体放电管TSS是基于开关型晶闸管原理和结构的一种二端负阻器件,用于保护敏感易损的集成电路,使之免受瞬间雷电和过电压的冲击而造成的损坏。
高端的固体放电管产品采用了先进的离子注入技术和玻璃钝化工艺,产品具有准确导通、响应速度快、浪涌吸收能力强、可靠性高、稳定性强等特点。
应用领域:由于半导体放电管的开关特性和稳定性等产品优势,因此被广泛应用于交换机、电话机、传真机、配线架、XDSL、ADSL、G-PON、通讯接口、通讯发射设备等一切需要过电压保护的领域,以保护其后端的芯片免受瞬态过电压的冲击和破坏。
在当今世界微电子及通讯设备高速发展的今天,半导体放电管已经成为通讯和消费类电子行业过压保护的首选分立器件。
半导体放电管的正确选用方法:1、反向击穿电压VBR必须大于被保护电路的最大工作电压。
如在POTS应用中,最大振铃电压(150V)的峰值电压(150*1.41=212.2V)和直流偏压峰值(56.6V)之和为268.8V,所以应选择VBR大于268.8V的器件。
又如在ISDN应用中,最大DC电压(150V)和最大信号电压(3V)之和为153V,所以应选择VBR大于153V的器件。
2、转折电压VBO必须小于被保护电路所允许的最大瞬间峰值电压。
3、若要使半导体放电管通过大的浪涌电流后自复位,器件的维持电流IH必须大于系统所能能提供的电流值。
即:IH(系统电压/源阻抗)。
4、最大瞬间峰值电流IPP必须大于通讯设备标准的规定值。
如FCC Part68A类型的IPP应大于100A;Bellcore 1089的IPP应大于25A。
5、半导体放电管处于导通状态(导通)时,所损耗的功率P应小于其额定功率Pcm,Pcm=KVT*IPP,其中K由短路电流的波形决定。
对于指数波,方波,正弦波,三角波K值分别为1.00,1.4,2.2,2.8。
本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。
一半导体放电管的应用概述半导体放电管是一种微型化、高频化和高可靠性的特殊新型电力电子半导体器件,它的结构是一种五层双端对称双向晶闸管,导通与关断只由外加电压或dv/dt决定,因此在线路的在线保护方面有着优越的性能而广泛地应用于通信电路系统中作为雷电浪涌保护器。
目前,完全由它代替气体放电管,用来保护程控交换机、电话机等免遭雷电和交流电源线感应的强脉冲干扰,是理想的换代产品。
管子的漏电流极小,相当于断路;当外电压继续加大时,开始发生击穿(类似与二级管);外电压进一步加大后,管子两端变成通态,相当于短路,可泄放大的电流;当外电压撤去以后,管子可恢复断态,能重复使用且双向结构及电参数一致,可以泄放双向的过电压。
对称的伏安特性曲线如图一:图一半导体放电管的电路符号如图2:半导体吸收雷电浪涌示意如图3:图 2图 6对于低于200伏左右(振铃电路可能产生一百五六十伏的电压,在此正常工作电压下放电管应不动作)的电压,固体放电管不动作(对应参数:不动作电压),相当于断路(对应参数:绝缘电阻)外界引入的过电压经一级保护后,到达B点时最高只有两三百伏(对应固体放电管的最高限制电压),此电压经过二级保护区后到达D点后只有五六十伏,不会对用户接口卡造成损坏。
二级保护可以由低压放电管(标称58伏)构成,也可以由专用的二级保护电路来实现。
对电信终端的损害。
图7为二极管DO-15轴式封装的固体放电管示意图图8为外形图图8 图7二半导体放电管芯片的结构及原理半导体放电管的芯片结构如图8、平面图形如图9图8 图9 (表面金属EB短路)从结构可以分解如图10从上图可以看出,五层双端结构的半导体放电管芯片可以看作是两个无门极的晶闸管的组合,而每个晶闸管又可以看作是两个互相作用的三级管的组合。
在此,简要介绍一下晶闸管的导通条件如图10中的电路图所示:档门极施加触发电流IG时,经晶体管V2放大为电流IC2,又可将IC2视为V1管的基极电流,经V1管放大为电流IC1。
半导体放电管和气体放电管的基础知识气体放电管的结构及特性开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。
为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。
气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。
这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。
气体放电管有二极放电管及三极放电管两种类型。
有的气体放电管带有电极引线,有的则没有电极引线。
从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。
当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。
气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。
随着过电压的降低,通过气体放电管的电流也相应减少。
当电流降到维持弧光状态所需的最小电流值以下时,弧光放电停止,放电管的辉光熄灭。
气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。
气体放电管也是电路防雷击及瞬时过压的保护元件。
气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。
半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。