数理方程第二章 关于二阶常微分方程本征值问题的一些结论-6资料
- 格式:ppt
- 大小:245.00 KB
- 文档页数:10
二阶微分方程解法第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r ey 22=是方程的解, 又x r r x r x r e e e y y )(212121-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y=eαx(C1cosβx+C2sinβx ).求二阶常系数齐次线性微分方程y''+py'+qy=0的通解的步骤为:第一步写出微分方程的特征方程r2+pr+q=0第二步求出特征方程的两个根r1、r2.第三步根据特征方程的两个根的不同情况,写出微分方程的通解.例1 求微分方程y''-2y'-3y=0的通解.解所给微分方程的特征方程为r2-2r-3=0,即(r+1)(r-3)=0.其根r1=-1,r2=3是两个不相等的实根,因此所求通解为y=C1e-x+C2e3x.例2 求方程y''+2y'+y=0满足初始条件y|x=0=4、y'|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e-x.将上式对x求导,得y'=(C2-4-C2x)e-x.再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例 3 求微分方程y''-2y'+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0.特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) +⋅⋅⋅+p n-1y'+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r1,2=α±iβ对应于两项:eαx(C1cosβx+C2sinβx);k重实根r对应于k项:e rx(C1+C2x+⋅⋅⋅+C k x k-1);一对k重复根r1,2=α±iβ对应于2k项:eαx[(C1+C2x+⋅⋅⋅+C k x k-1)cosβx+( D1+D2x+⋅⋅⋅+D k x k-1)sinβx].例4 求方程y (4)-2y '''+5y ''=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ''+py '+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r2+pr+q=0 的根,则λ2+pλ+q≠0.要使上式成立,Q(x)应设为m 次多项式:Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=Q m(x)eλx.(2)如果λ是特征方程r2+pr+q=0 的单根,则λ2+pλ+q=0,但2λ+p≠0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=xQ m(x)eλx.(3)如果λ是特征方程r2+pr+q=0的二重根,则λ2+pλ+q=0, 2λ+p=0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=x2Q m(x)eλx.综上所述,我们有如下结论:如果f(x)=P m(x)eλx,则二阶常系数非齐次线性微分方程y''+py'+qy=f(x)有形如y*=x k Q m(x)eλx的特解,其中Q m(x)是与P m(x)同次的多项式,而k按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y''-2y'-3y=3x+1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0).与所给方程对应的齐次方程为y ''-2y '-3y =0,它的特征方程为r 2-2r -3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得-3b 0x -2b 0-3b 1=3x +1,比较两端x 同次幂的系数, 得⎩⎨⎧=--=-13233100b b b , -3b 0=3, -2b 0-3b 1=1. 由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y ''-5y '+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2).与所给方程对应的齐次方程为y ''-5y '+6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得-2b 0x +2b 0-b 1=x .比较两端x 同次幂的系数, 得⎩⎨⎧=-=-0212100b b b , -2b 0=1, 2b 0-b 1=0. 由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+-+=. 提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x .方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ] ]2)(2)([ ie e x P e ex P e x i x i n x i xi l x ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-= x i x i e x P e x P )()()()(ωλωλ-++=, 其中)(21)(i P P x P n l -=, )(21)(i P P x P nl +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解,其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++==x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ''+py '+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ''+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ''+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x .比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .。
第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。
二阶常微分方程解法二阶常微分方程是数学中常见的方程形式,可以通过不同的方法来求解。
本文将介绍二阶常微分方程的解法,并通过例题来说明具体步骤。
一、齐次二阶常微分方程的解法齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = 0齐次二阶常微分方程的解法步骤如下:1. 首先,设y=e^(λx)为方程的解,其中λ为待定常数。
2. 求解特征方程λ^2 + P(x)λ + Q(x) = 0的根。
设该方程的根为λ1和λ2。
3. 根据特征根λ1和λ2的值,分别列出对应的解y1=e^(λ1x)和y2=e^(λ2x)。
4. 则原方程的通解为y=C1y1 + C2y2,其中C1和C2为任意常数。
例题1:求解二阶常微分方程y'' - 4y' + 4y = 0。
解题步骤:1. 特征方程为λ^2 - 4λ + 4 = 0,解得λ=2。
2. 因此,对应的特解为y1=e^(2x)。
3. 原方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二、非齐次二阶常微分方程的解法非齐次二阶常微分方程的一般形式为:y'' + P(x)y' + Q(x)y = f(x)非齐次二阶常微分方程的解法步骤如下:1. 首先,求解对应的齐次方程y'' + P(x)y' + Q(x)y = 0的通解,假设为y=C1y1 + C2y2。
2. 再根据待定系数法,设非齐次方程的特解为y*,代入原方程得到特解的形式。
3. 求解特解形式中的待定系数,并将特解形式代入原方程进行验证。
4. 特解形式正确且验证通过后,非齐次方程的通解为y=C1y1 +C2y2 + y*。
例题2:求解二阶常微分方程y'' - 4y' + 4y = x^2 + 3x + 2。
解题步骤:1. 对应的齐次方程的通解为y=C1e^(2x) + C2xe^(2x),其中C1和C2为任意常数。
二阶常微分方程边值问题的数值解法摘要求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础.对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析.关键词:常微分方程,边值问题,差分法,Taylor展开,数值解The Numerical Solutions ofSecond-Order Ordinary Differential Equationswith the Boundary Value ProblemsABSTRACTThe numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.For the second-order ordinary differential equations with the boundary value problems, we review two kinds of numerical methods commonly used for linear boundary value problems, i.e. shooting method and finite difference method. There are mainly two ways to create these finite difference methods: i.e. Taylor series expansion method and Numerical Integration. The later one is more flexible, because at the same time it can get the estimates of the truncation errors. We give the exact calculating steps and Matlab codes. Moreover, we compare the advantages and disadvantages in detail of these two methods through a specific numerical example. In the first chapter, we will introduce some backgrounds of the ordinary differential equations and the difference method. In the second chapter, we will obtain difference schemes of the numerical solutions of the Second-Order ordinary differential equations with the boundary value problemsthrough the Taylor expansion. In the third chapter, we using Matlab to solve the specific examples on the basis of the second chapter, and analyzing the errors.KEY WORDS: Ordinary Differential Equations, Boundary Value Problems, Finite Difference Method, Taylor Expansion, Numerical Solution毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
南京师范大学泰州学院毕业论文(设计)(一六届)题目:二阶常微分方程的解法院(系、部):数学科学与应用学院专业:数学与应用数学姓名:潘陆学号08120146指导教师:刘陆军南京师范大学泰州学院教务处制摘要:本文主要是介绍了二阶常微分方程众多解法中的三种,分别为特征方程法,拉普拉斯变换法和常数变易法,研究并讨论了二阶常微分方程在特征方程法中特征方程根为实根,复根和重根的情形。
我们选用了弹簧振子系统的振子运动,用这三种不同的方法来解决该问题。
关键词:二阶常微分方程;特征根法;常数变易法;拉普拉斯变换Abstract:The main purpose of this paper is the second-order ordinary many differential equation solution of three, respectively as the characteristic equation method, Laplace transform method and variation of constants method, study and discuss the second-order often differential equation in the characteristic equation of the roots of the characteristic equation for real roots, complex roots and root weight. We choose the spring oscillator the oscillator motion, these three different methods to solve the problem.Keywords: second order ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform目录1 绪论 (3)1.1 二阶常微分方程的起源和发展史 (3)1.2 二阶常微分方程的介绍 (3)1.3 研究二阶常微分方程的目的与意义 (4)2 二阶常系数常微分方程的几种解法 (5)2.1 特征方程法 (5)2.1.1 特征根是两个实根的情形 (5)2.1.2 特征根有重根的情形 (6)2.2 常数变易法 (7)2.3 拉普拉斯变换法 (9)3 二阶常微分方程解法的应用(分析例题) (11)3.1 特征方程法 (11)3.2 常数变易法 (13)3.3 拉普拉斯变换法 (14)4 结论和启示 (16)谢辞 (18)参考文献 (19)1 绪论1.1 二阶常微分方程的起源和发展史既然说到了微分方程,就不能不提到海王星的故事,它的发现是人类智慧的硕果,微分方程在其中扮演了重要的角色,并且在其中也包含数学演绎法的作用。
二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。
接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。
另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。
最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。
1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的方程。
这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。
在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。
因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。
常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。
牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。
他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。
用现在叫做“首次积分”的办法,完全解决了它的求解问题。
17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。
20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。
1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。
第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。
40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征, 如闭轨是否存在、结构是否稳定等, 对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。
二阶常微分方程的特解
二阶常微分方程的特解需要根据具体的方程形式来确定。
一般来说,我们可以使用初值条件或特定的边界条件来求解。
以下是一些常见的二阶常微分方程及其对应的特解方法:
1. 齐次线性方程:形如y'' + p(x)y' + q(x)y = 0 的方程,其中p(x) 和q(x) 是已知函数。
可以使用特征方程法来求解。
首先假设
y=e^(mx),代入方程得到特征方程m^2 + p(x)m + q(x) = 0。
解出特征方程后,根据根的不同情况,可以得到不同类型的特解。
2. 非齐次线性方程:形如y'' + p(x)y' + q(x)y = f(x) 的方程,其中f(x) 是已知函数。
可以使用常数变易法来求解。
首先求齐次线性方程的通解y_0(x),然后假设特解为y_p(x) = u(x)y_0(x),代入方程中求解u(x)。
最后特解为y(x) = y_0(x) + y_p(x)。
3. 高阶常系数线性齐次方程:形如a_ny^(n) + a_(n-1)y^(n-1) + ... + a_1y' + a_0y = 0 的方程,其中a_n, a_(n-1), ..., a_1, a_0 是已知常数。
可以使用特征方程法来求解。
假设y=e^(mx),代入方程得到特征方程a_nm^n + a_(n-1)m^(n-1) + ... + a_1m + a_0 = 0。
解出特征方程后,根据根的不同情况,可以得到不同类型的特解。
这些只是二阶常微分方程的一些常见特解方法,实际问题中可能还有其他特殊情况需要考虑。
第2章 微分方程的固有值问题§2.1 微分方程初值问题的求解方法本节讨论:①齐次常微分方程的解法,②非齐次常微分方程的解法,③去掉一阶导数的方法 ,④初值问题一些解法的例子二阶常微分方程边值问题一般可写为:1122()()(),x a x b y p x y h x y f x y y A y yBαβαβ=='''++=⎧⎨''+=+=⎩ ([],x a b ∈) (2.1.1)二阶常微分方程初值问题一般可写为:()()()(0),(0)y p x y h x y f x y A y B '''++=⎧⎨'==⎩([0,)x ∈∞) (2.1.2) 本节属常微分方程内容,因此仅用例子介绍方法,对其结果不讨论不证明。
⒈ 齐次常微分方程的常用解法本章只给出相关数学课程表中二阶常微分方程(也可称为一维数学物理方程)的一些相关公式与结论。
▲常系数齐次微分方程的解 二阶常系数齐次常微分方程一般可写为0=+'+''by y a y (2.1.3)本章仍然沿用常微分方程中的符号)(x y y =而没使用数学物理方程中的符号)(x u u =。
它的特征方程为02=++b a λλ (2.1.4)设特征根为1λ与2λ,则原方程有解,当方程两根为①不相等的实根、②相等的实根λ、③共轭复根时,方程的解分别为:x x Be Ae y 21λλ+=,x e Bx A y λ)(+=,)sin cos (x B x A e y x ββα+=,( βαλi i ±=)(2.1.5)例1:(常系数微分方程)求034=+'-''y y y 的解解:由特征方程0342=+-λλ得特征根为11=λ与31=λ,则原方程有解:x x Be Ae y 3+=▲欧拉方程的解 二阶欧拉方程为:02=+'+''by y x a y x (2.1.6)式中a 、b 为常数。