半导体物理知识
- 格式:docx
- 大小:84.96 KB
- 文档页数:15
半导体物理知识点1.前两章:1、半导体、导体、绝缘体的能带的定性区别2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。
注意随着原子序数的增大,还原性增大,得到的电子稳固,便能提供更多的空穴。
所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,mt是沿垂直轴方向的质量,ml是沿轴方向的质量。
锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。
砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。
此能谷可以造成负微分电阻效应。
2.第三章载流子统计规律:1、普适公式ni^2 = n*pni^2 = (NcNv)^0.5*exp(-Eg/(k0T))n = Nc*exp((Ef-Ec)/(k0T))p = Nv*exp((Ev-Ef)/(k0T))Nv Nc与 T^1.5成正比2、掺杂时。
注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意Ef前的符号!nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度3、掺杂时,电离情况。
电中性条件: n + na- = p + nd+N型的电中性条件: n + = p + nd+(1)低温弱电离区:记住是忽略本征激发。
由n = nd+推导,先得费米能级,再代入得电子浓度。
Ef从Ec和Ed中间处,随T增的阶段。
半导体物理知识点总结5、半导体中电子的准动量:经典意义上的动量是惯性质量与速度的乘积,即v。
根据教材式(1-1)和式(1-10),对于自由电子v=hk,这是自由电子的真实动量,而在半导体中hk=v;有效质量与惯性质量有质的区别,前者隐含了晶格势场的作用(虽然有质量的量纲)。
因为v与v具有相同的形式,因此称v为准动量。
6、本征激发:共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到导带成为导带电子的过程,称为本征激发。
这一概念今后经常用到。
7、载流子:晶体中荷载电流(或传导电流)的粒子。
金属中为电子,半导体中有两种载流子即电子和空穴,而影响半导体导电性的主要是导带电子和价带空穴。
8、回旋共振实验:目的是测量电子的有效质量,以便采用理论与实验相结合的方法推出半导体的能带结构。
为能观测出明显的共振吸收峰,就要求样品纯度要高,而且实验一般在低温下进行,交变电磁场的频率在微波甚至在红外光的范围。
实验中常是固定交变电磁场的频率,改变磁感应强度以观测吸收现象。
磁感应强度约为零点几T。
等能面的形状与有效质量密切相关,对于球形等能面,有效质量各向同性,即只有一个有效质量;对于椭球等能面,有效质量各向异性,即在不同的波矢方向对应不同的有效质量。
9、横向有效质量沿椭球短轴方向,纵向有效质量沿椭球长轴方向。
10、直接带隙半导体是指导带极小值与价带极大值对应同一波矢;间接带隙半导体是指导带极小值与价带极大值对应不同的波矢。
本章要求掌握的内容及考点:——本章要求熟练掌握基本的物理原理和概念——考题主要涉及填空、名词解释和简答题(物理过程的解释)1、以上基本概念和名词术语的解释。
2、熟悉金刚石型结构与闪锌矿型结构晶胞原子的空间立体分布及硅、锗、砷化镓晶体结构特点,晶格常数,原子密度数量级(1022个原子/立方厘米)。
3、掌握能带形成的原因及电子共有化运动的特点;掌握实际半导体的能带的特点。
4、掌握有效质量的意义及计算公式,速度的计算方法,正确理解半导体中电子的加速度与外力及有效质量的关系,正确理解准动量及其计算方法,准动量的变化量应为。
第二章半导体物理基础一般而言,制作太阳能电池的最基本材料是半导体材料,因而本章将介绍一些半导体物理的基本知识,包括半导体中的电子状态和能带、本征与掺杂半导体、pn结以及半导体的光学性质等内容。
一、半导体中的电子状态和能带1、原子的能级和晶体的能带(m)一般的晶体结合,可以概括为离子性结合,共价结合,金属性结合和分子结合(范得瓦尔斯结合)四种不同的基本形式。
晶体的结合形式半导体材料主要靠的是共价键结合。
饱和性:一个原子只能形成一定数目的共价键;方向性:原子只能在特定方向上形成共价键;共价键的特点:电子的共有化运动当原子相互接近形成晶体时,不同原子的内外各电子壳层之间就有一定程度的交叠,相邻原子最外层交叠最多,内壳层交叠较少。
原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动称为电子的共有化运动。
电子只能在相似壳层间转移;最外层电子的共有化运动最显著;当两个原子相距很远时,如同两个孤立的原子,每个能级是二度简并的。
当两个原子互相靠近时,每个原子中的电子除了受到本身原子势场的作用,还要受到另一个原子势场的作用,其结果是每一个二度简并的能级都分裂为二个彼此相距很近的能级,两个原子靠得越近,分裂得越厉害。
当N个原子互相靠近形成晶体后,每一个N度简并的能级都分裂成N个彼此相距很近的能级,这N 个能级组成一个能带,这时电子不再属于某一个原子而是在晶体中作共有化运动。
分裂的每一个能带都称为允带,允带之间因没有能级称为禁带。
所有固体中均含有大量的电子,但其导电性却相差很大。
量子力学与固体能带论的发展,使人们认识到固体导电性可根据电子填充能带的情况来说明。
2、金属、绝缘体与半导体固体能够导电,是固体中电子在外电场作用下作定向运动的结果。
由于电场力对电子的加速作用,使电子的运动速度和能量都发生了变化。
也就是说,电子与外电场间发生了能量交换。
一、半导体物理知识大纲➢核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)➢核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)➢核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在1.3节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在1.6节,介绍Si、Ge的能带结构。
(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理知识点1.前两章:1、半导体、导体、绝缘体的能带的定性区别2、常见三族元素:B(硼)、Al、Ga(镓)、In(铟)、TI(铊)。
注意随着原子序数的增大,还原性增大,得到的电子稳固,便能提供更多的空穴。
所以同样条件时原子序数大的提供空穴更多一点、费米能级更低一点常见五族元素:N、P、As(砷)、Sb(锑)、Bi(铋)3、有效质量,m(ij)=hbar^2/(E对ki和kj的混合偏导)4、硅的导带等能面,6个椭球,是k空间中[001]及其对称方向上的6个能量最低点,mt是沿垂直轴方向的质量,ml是沿轴方向的质量。
锗的导带等能面,8个椭球没事k空间中[111]及其对称方向上的8个能量最低点。
砷化镓是直接带隙半导体,但在[111]方向上有一个卫星能谷。
此能谷可以造成负微分电阻效应。
2.第三章载流子统计规律:1、普适公式ni^2 = n*pni^2 = (NcNv)^0.5*exp(-Eg/(k0T))n = Nc*exp((Ef-Ec)/(k0T))p = Nv*exp((Ev-Ef)/(k0T))Nv Nc与 T^1.5成正比2、掺杂时。
注意施主上的电子浓度符合修正的费米分布,但是其它的都不是了,注意Ef前的符号!nd = Nd/(1+1/gd*exp((Ed-Ef)/(k0T)) gd = 2 施主上的电子浓度nd+ = Nd/(1+gd*exp((Ef-Ed)/(k0T)) 电离施主的浓度na = Na/(1+1/ga*exp((Ef-Ea)/(k0T)) ga = 4 受主上的空穴浓度na- = Na/(1+ga*exp((Ea-Ef)/(k0T)) 电离受主浓度3、掺杂时,电离情况。
电中性条件: n + na- = p + nd+N型的电中性条件: n + = p + nd+(1)低温弱电离区:记住是忽略本征激发。
由n = nd+推导,先得费米能级,再代入得电子浓度。
Ef从Ec和Ed中间处,随T增的阶段。
第一章 半导体的能带理论1. 基本概念✧ 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。
✧ 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场也是周期性变化的。
✧ 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、禁带)→形成能带✧ 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
✧ 价带:P6✧ 导带:P6✧ 禁带:P5✧ 导体✧ 半导体✧ 绝缘体的能带✧ 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。
✧ 空穴:具有正电荷q 和正有效质量的粒子✧ 电子空穴对✧ 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
✧ 载流子及载流子浓度2. 基本理论✧ 晶体中的电子共有化运动✧ 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。
但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中的杂质与缺陷能级1. 基本概念✧ 杂质存在的两种形式:间隙式杂质:杂质原子位于晶格原子间的间隙位置。
替位式杂质:杂质原子取代晶格原子而位于晶格点处。
半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。
它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。
在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。
一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。
常见的能带包括价带和导带。
价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。
导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。
禁带宽度决定了材料的导电性质。
2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。
量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。
3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。
半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。
二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。
半导体中的载流子种类包括电子和空穴。
这些载流子的输运以及它们的沟通将直接影响材料的电学行为。
2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。
这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。
荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。
3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。
通过面掺杂,半导体的电导率可以得到提高。
面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。
三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。
半导体物理学基础知识半导体是一种固体材料,它的电导率介于导体和绝缘体之间,因而得名。
半导体的特殊性质使得它在电子学、光电子学、计算机科学等众多应用领域具有重要的地位。
本文将介绍半导体物理学的基础知识,包括半导体材料的结构和性质,电子在半导体中的运动和掺杂等方面。
一、半导体材料的结构和性质半导体材料的基本结构由四个元素构成:硅、锗、砷和磷。
这些元素除了硅和锗是单质以外,其余的都是化合物。
半导体材料的晶体结构通常为立方晶体或四面体晶体。
半导体材料的电性质由其晶格结构和掺杂情况决定。
在材料内的原子构成规则的晶格结构中,每个原子都有定位,并与其他原子通过化学键相互链接。
晶格结构可以分为晶格点和间隙两个部分。
如果每个原子都占据晶格点,那么该半导体材料的结构就是类似于钻石的结构,实际上就是一个绝缘体。
但是,如果一些晶格点中有缺陷,或是有一些原子没有在晶格点上占据位置,则可以导致半导体材料成为电导率介于导体和绝缘体之间的半导体。
在半导体材料中,掺杂是一种常用技术,对于改变其电性质尤其有效。
掺杂就是在半导体中加入少量的另一种元素,以改变其电子结构和电导率。
掺杂元素是指半导体材料中所加入的杂质原子。
它们可以分为两类:施主和受主。
施主原子是比半导体材料中的原子更多的元素(例如磷或硼),在它占据晶格点时,它的外层电子一般比材料中的原子多,这些电子比较容易脱离施主原子并移动到其他位置,从而形成了自由电子。
受主原子是原子数比材料中的原子少的元素(例如锑或砷),因此它会在晶体中形成一些空位。
与施主原子不同的是,受主原子会接受电子,从而形成电子空穴。
二、电子在半导体中的运动在半导体中,电子的运动可以由以下几个方面来描述:载流子流动、漂移、扩散、复合效应。
载流子是电子在半导体中运动的基本单元,携带带电粒子的特性。
在半导体中,载流子通常包括自由电子和空穴。
电子的自由运动和空穴的自由运动是载流子流动的两种形式。
载流子流动的基本原理是,施主和受主原子的掺杂,带来了半导体内部电子和空穴的浓度不平衡,因此会发生电场和电流。
半导体物理考点归纳一· 1.金刚石 1) 结构特点:a. 由同类原子组成的复式晶格。
其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。
c. 配位数为4,较低,较稳定。
(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。
2) 代表性半导体:族的C ,,等元素半导体大多属于这种结构。
2.闪锌矿 1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。
2) 代表性半导体:等三五族元素化合物均属于此种结构。
3.电子共有化运动:原子结合为晶体时,轨道交叠。
外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。
4.布洛赫波:kxi k k e x u x πϕ2)()(=晶体中电子运动的基本方程为: ,K 为波矢,(x)为一个与晶格同周期的周期性函数, 5.布里渊区:禁带出现在2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1<k<-1/2a,1/2a<k<1E(k)也是k 的周期函数,周期为1,即E(k)(),能带愈宽,共有化运动就更强烈。
6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质 7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为。
施主能级离导带很近。
8.受主杂质:族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。
9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记)()(na x u x u k k +=为。
半导体物理基本知识一、导体、半导体和绝缘体物质就其导电性来说,可以分为绝缘体、半导体、和导体。
电阻率大于109欧姆·厘米的物体称为绝缘体,小于10-4欧姆·厘米的物体为导体,电阻率介于10-4~109欧姆·厘米的物体为半导体。
二、半导体材料的种类半导体材料种类繁多,从单质到化合物,从无机物到有机物,从单晶体到非晶体,都可以作为半导体材料。
半导体材料大致可以分为以下几类:1、元素半导体元素半导体又称为单质半导体。
在元素周期表中介于金属与非金属之间的Si、Ge、Se、Te、B、C、P等元素都有半导体的性质。
在单质元素半导体中具有实用价值的只有硅、锗、硒。
而硅和锗是最重要的两种半导体材料。
尤其半导体硅材料已被广泛地用来制造各种器件、数字和线性集成电路以及大规模集成电路等。
硒作为半导体材料主要用做整流器,但由于硅、锗制造的整流器比硒整流器性能良好,所以硒逐渐被硅、锗取代。
2、化合物半导体化合物半导体是AⅢBⅤ型化合物,由元素中期表中ⅢA族的Al、Ga、和ⅤA族的P、As、Sb等合成的化合物成为AⅢBⅤ型化合物。
如AlP、GaAs、GaSb、InAs、InSb。
在这一类化合物半导体中用最广泛的是GaAs,它可以用来制作GaAs晶体管、场效应管、雪崩管、超高速电路及微波器件等。
3、氧化物半导体许多金属的氧化物具有半导体性质,如Cu2O、CuO、ZnO、MgO、Al2O3等等。
4、固溶体半导体元素半导体和无机化合物半导体相互溶解而成的半导体材料成为固溶体半导体。
如:Ge-Si、GaAs-GaP,而GaAs-GaP是发光二极管的材料。
5、玻璃半导体玻璃半导体是指具有半导体性质的一类玻璃。
如氧化物玻璃半导体和元素玻璃半导体,氧化物玻璃半导体是由V2O5、P2O5、Bi2O3、FeO、CaO、PbO等中的某几种按一定配比熔融后淬冷而成。
元素玻璃半导体是由S、Se、Te、As、Sb、Ge、Si、P等元素中的某几种,一定配比熔融后淬冷而成。
半导体物理知识点梳理1.半导体材料的能带结构:半导体材料的能带结构是理解其物性的基础。
在二维的能带图中,包含导带和价带之间的能隙。
导带中的电子可以自由移动,而价带中的电子需要外加能量才能进入导带。
2.纯半导体和杂质半导体:纯半导体指的是没有杂质掺杂的半导体材料,其导电能力较弱。
而杂质半导体是通过引入适量的杂质原子来改变半导体材料的导电性质,其中掺入的杂质原子被称为施主或受主。
3.载流子输运:半导体中的电导主要是由自由载流子贡献的,包括n型半导体中的电子和p型半导体中的空穴。
当施主杂质掺杂进入p型半导体时,会产生附加的自由电子;相反,当受主杂质掺杂进入n型半导体时,会产生附加的空穴。
这些自由载流子通过材料中的散射、漂移和扩散等方式进行输运。
4. pn结和二极管:pn结是由p型半导体和n型半导体结合而成的电子器件。
在pn结中,发生了空穴从p区向n区的扩散和电子从n区向p区的扩散,导致p区和n区的空间电荷区形成。
当正向偏置时,电流可以通过pn结,而反向偏置时,电流很小。
这种特性使得二极管可以用作整流器件。
5.晶体管:晶体管是一种三层结构的半导体器件,由一个n型区和两个p型区或一个p型区和两个n型区构成。
晶体管可以用作放大器和开关,其工作原理是通过控制基极电流来调节集电极电流。
6.MOSFET:金属-绝缘体-半导体场效应晶体管,即MOSFET,是一种三层结构的半导体器件。
MOSFET具有较高的输入阻抗和较低的功耗,广泛应用于集成电路中。
MOSFET的工作原理是通过调节栅极电压来调节通道中的电荷密度。
7.光电二极管和光电导:光电二极管和光电导是基于光电效应的半导体器件。
光电二极管是将光信号转换为电压信号的器件,而光电导则是将光信号转换为电流信号。
这两种器件在通信和光电探测等领域有广泛的应用。
8.半导体激光器:半导体激光器是一种利用半导体材料的发光原理来产生激光束的器件。
半导体激光器具有体积小、效率高和工作电流低等优势,广泛应用于光通信和光存储等领域。
物理学中的半导体物理知识点半导体物理学是物理学领域中的一个重要分支,研究半导体材料及其性质与行为。
本文将介绍几个半导体物理学中的知识点,包括半导体的基本概念、载流子行为、PN结及其应用。
一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料。
它的导电能力介于导体和绝缘体之间,可以通过控制外加电场或温度来改变其电导率。
根据能带理论,半导体材料中存在一个禁带,将价带和导带分开,如果半导体材料的价带被填满,而导带是空的,那么半导体就没有导电能力;当半导体材料的温度升高或者施加电场时,一些电子会跃迁到导带中,形成可以导电的载流子。
二、载流子行为在半导体中,载流子是指能够输送电流的带电粒子,可以分为自由电子和空穴两种类型。
1. 自由电子:自由电子是指在半导体晶格中脱离原子束缚的电子,它具有负电荷。
在纯净的半导体中,自由电子的数量较少。
2. 空穴:空穴是指由于半导体中某个原子缺少一个电子而形成的一个正电荷,可以看作是受激发的价带上的空位。
载流子的行为受到材料的类型和掺杂等因素的影响。
三、PN结及其应用PN结是半导体中最基本的器件之一,由P型半导体和N型半导体的结合构成。
P型半导体中的空穴浓度较高,N型半导体中的自由电子浓度较高,当这两种类型的半导体材料接触时,自由电子和空穴会发生复合,形成一个耗尽区域。
PN结的特性使得它在半导体器件中有着广泛的应用,例如:1. 整流器:利用PN结的单向导电性质,将交流电信号转换为直流电信号。
2. 发光二极管(LED):在PN结中注入电流可以激发电子跃迁,从而产生光线,实现发光效果。
3. 晶体管:晶体管是一种基于PN结的三端口器件,通过调控PN结的导电状态,实现信号放大和开关控制。
PN结的应用广泛且多样化,是现代电子技术中不可或缺的一个元件。
总结:半导体物理学作为物理学中的重要分支,研究的是半导体材料及其性质与行为。
本文介绍了半导体的基本概念,包括能带理论和禁带,以及载流子行为,其中自由电子和空穴是半导体中的两种重要载流子。
基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体:能带中一定有不满带半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带禁带宽度较小,一般小于2eV绝缘体:能带中只有满带和空带禁带宽度较大,一般大于2eV在外场的作用下,满带电子不导电,不满带电子可以导电总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴3.半导体材料的一般特性。
电阻率介于导体与绝缘体之间对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力)性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力)4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。
为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。
费米分布受到了泡利不相容原理的限制,而在E-EF>>k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。
在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<<1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。
半导体物理知识整理————————————————————————————————作者:————————————————————————————————日期:基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体:能带中一定有不满带半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带禁带宽度较小,一般小于2eV绝缘体:能带中只有满带和空带禁带宽度较大,一般大于2eV在外场的作用下,满带电子不导电,不满带电子可以导电总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴3.半导体材料的一般特性。
电阻率介于导体与绝缘体之间对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力)性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力)4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。
为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。
费米分布受到了泡利不相容原理的限制,而在E-EF>>k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。
在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<<1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。
水平:热平衡倾斜:费米能级朝哪边下倾斜,电子就往哪个方向流动,而电流的流动就是相反的方向,倾斜越大,电子流动程度越强,电流越大分裂:掺杂(准费米能级)6.何谓准费米能级?它和费米能级的区别是什么?当外界有很大能量注入,或者很多载流子注入时,载流子的数量会发生突然的变化,不再遵循费米-狄拉克分布,费米能级的调控暂时失灵当半导体的平衡态被破坏,而且存在非平衡载流子时,分别就价带和导带中的电子讲,他们各自基本上处于平衡态,而导带和价带之间处于不平衡态,因而,费米能级和统计分布函数对导带和价带各自仍然是适用的,它们都是局部费米能级,成为“准费米能级”电子和空穴的准费米能级的差反映了半导体偏离平衡态的程度。
当电子的准费米能级和空穴的准费米能级相重合时,形成统一费米能级,系统处于热平衡状态7.比较Si,Ge,GaAs能带结构的特点,并说明各自在不同器件中应用的优势。
硅的价带顶在中心点k=0处,导带底不在中心点k=0处,而是沿[100]轴,位于布里渊区中心至边缘0.85倍处锗的价带顶在中心点k=0处,导带底也不在中心点k=0处,而是沿[111]轴,导带极小值正好位于布里渊区边界砷化镓的价带顶在中心点k=0处,,导带能量的最小值位于k=0处,在[111]和[100]方向布里渊区边界L和X处还各有一个极小值。
砷化镓的导带底和价带顶对应的k值相同硅和锗是间接带隙半导体,砷化镓是直接带隙半导体砷化镓用于制备发光器件时,其内部量子效率较高8.重空穴,轻空穴的概念。
硅、锗、砷化镓存在极大值相重合的两个价带重空穴:外能带曲率小,对应的有效质量大轻空穴:内能带曲率大,对应的有效质量小9.有效质量、状态密度有效质量、电导有效质量概念。
10.什么是本征半导体和本征激发?本征半导体:没有杂质和缺陷的纯净的半导体本征激发:T>0K时,电子从价带激发到导带,同时价带中产生空穴本征半导体的费米能级Ei基本位于禁带中央11.何谓施主杂质和受主杂质?浅能级杂质与深能级杂质?各自的作用。
V族元素在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,称此类杂质为施主杂质或n型杂质被施主杂质束缚的电子的能量状态称为施主能级,记为ED。
施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电子,使半导体成为电子导电的n型半导体III族元素在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,称此类杂质为受主杂质或p型杂质被受主杂质束缚的空穴的能量状态称为受主能级,记为EA。
受主杂质电离后成为不可移动的带负电的受主离子,同时向价带提供空穴,使半导体成为空穴导电的p型半导体电离能小的杂质称为浅能级杂质。
施主能级靠近导带底,受主能级靠近价带顶。
室温下,掺杂浓度不很高的情况下,浅能级杂质几乎可以全部电离。
浅能级杂质电离能比禁带宽度小得多,杂质种类对半导体的导电性影响很大优点:室温下有很低的电离能,可以进行追加式的浓度控制非III、V族元素在硅、锗的禁带中产生的施主能级距离导带底较远和受主能级距离价带顶较远,形成深能级,称为深能级杂质。
有些深能级杂质会发生多次电离,在禁带中产生对应的多个能级,有的深能级杂质既能引入施主能级,又能引入受主能级特点:不容易电离,对载流子浓度影响不大;深能级杂质能够产生多次电离,每次电离均对应一个能级,甚至既产生施主能级也产生受主能级;深能级杂质的复合作用比浅能级杂质强,可作为复合中心12.何谓杂质补偿?举例说明有何实际应用。
半导体中存在施主杂质和受主杂质时,它们的共同作用会使载流子减少,这种作用称为杂质补偿在制造半导体器件的过程中,通过采用杂质补偿的方法来改变半导体某个区域的导电类型或电阻率利用杂质的补偿作用,根据扩散或离子注入的方法来改变半导体某一区域的导电类型,制成各种器件。
例如:在一块n 型半导体基片的一侧掺入较高浓度的受主杂质,由于杂质的补偿作用,该区就成为p型半导体13.金原子的带电状态与浅能级杂质的关系?14.画出(a)本征半导体、(b)n型半导体、(c)p型半导体的能带图,标出费米能级、导带底、价带顶、施主能级和受主能级的位置15.重掺杂的半导体其能带结构会发生何种变化?能带图中,杂质能级就不再是一根根分立的曲线,而是一条具有一定宽度的杂质能带。
如果掺杂浓度过高,杂质能带会进入导带或价带,与导带或价带相连形成新的简并能带,使半导体变成简并半导体,能带状态密度变化,禁带宽度变窄16.何谓非简并半导体、简并半导体?简并化条件?当费米能级距导带和价带位置都较远时,导带/价带上的电子/空穴数量很少,因此不太容易出现多个能态电子处于同一能级的简并情况,利用玻尔兹曼分布近似费米分布,称这种半导体为非简并半导体繁殖如果费米能级靠近导带或价带,则会出现电子/空穴拥挤,发生载流子煎饼华,被迫使用泡利不相容原理对电子/空穴加以限制,因此不可用玻尔兹曼分布近似费米分布,称为简并半导体E C -EF >2k 0T 非简并0< E C -E F <2k 0T 弱简并E C -EF <0 简并17.写出热平衡时, 非简并半导体 的表达式,n 0、p 0用n i 表示的表达式。
18.n 型、p 型(包括同时含有施主和受主杂质)半导体的电中性方程。
19.解释载流子浓度随温度的变化关系,并说明为什么高温下半导体器件无法工作。
一定的半导体材料,其本征载流子浓度随温度T 的升高而迅速增加一般半导体器件中,载流子主要来源于杂质电离,本征激发忽略不计,而当温度足够高,本征激发占主要地位,器件就不能正常工作(极限工作温度)20.温度、杂质浓度对费米能级位置的影响。
21.热平衡态、非平衡态、稳态概念.22.非平衡状态下载流子浓度表达式(用准费米能级表示),比较平衡与非平衡-+AD p n p n ,,,00下电子浓度n和空穴浓度p的乘积。
载流子的各种运动1.何谓直接复合?间接复合?载流子的产生和复合:电子和空穴增加和消失的过程直接复合:导带电子与价带空穴直接复合间接复合:通过位于禁带中的杂质或缺陷能级的中间过渡表面复合:在半导体表面发生的复合过程2.推导直接复合的非平衡载流子寿命公式,从直接复合的非平衡载流子寿命公式出发说明小注入条件下,寿命为定值。
3.了解间接复合的净复合率公式中各参量代表的意义,并从间接复合的净复合率公式出发说明深能级是最有效的复合中心。
E t=E i时,净复合率U取最大值,偏离越多,U越小。
这意味着复合中心能级的位置越靠近禁带中央,复合中心的复合作用越强。
当复合中心偏离禁带中央时,若靠近导带一侧,俘获电子的能力会增强,但是对空穴的俘获能力却下降了,这样使得总的复合作用减弱,反之也然。
当复合中心能级处禁带中央时,复合中心的复合作用最强,这是非平衡载流子的寿命达到极小值。
因此,通过掺入深能级杂质来降低非平衡载流子寿命4.已知间接复合的非平衡载流子寿命公式的一般形式,会化简不同费米能级位置下的寿命公式。
5. 半导体的主要散射机制?温度对它们的影响,原因?散射是指运动粒子受到力场(或势场)的作用时运动状态发生变化的一种现象晶格振动散射:温度越高,晶格振动越强,晶格散射越强电离杂质散射:温度越高,载流子速度越高,越容易掠过杂质中心,散射越弱对于杂质含量较多的半导体,温度很低时,晶格振动产生的声子数很少,因此电离杂质散射起主要作用,随着温度的升高,晶格振动产生的声子越来越多,晶格振动散射将呈现主导作用载流子的散射决定了载流子的平均自由时间,从而决定了载流子迁移率和电导率载流子的复合决定了非平衡载流子的寿命6. 何谓漂移运动?外加一定电场后,就会使载流子在电场方向的速度分量比其他方向大,从而呈现定向运动的态势,产生电流。
由电场引起的载流子的定向运动称为漂移运动,定向运动的速度成为漂移速度,由此产生的电流称为漂移电流7. 迁移率的定义、量纲。
影响迁移率的因素。
在弱电场范围内,平均漂移速度的大小与电场强度成正比,比例系数用μ表示,称为迁移率,表示单位场强下电子的平均漂移速度,单位是m2/V*s,习惯上只取正值。
迁移率的大小反映了载流子迁移的难易程度有效质量,散射。
载流子本身的有效质量越大,移动就越困难;载流子运动时遭受的散射越频繁,移动也会越困难8. 解释迁移率与杂质浓度、温度的关系。
杂质浓度升高,电离杂质散射上升,迁移率下降掺杂很轻,忽略电离杂质散射温度↑,晶格振动散射↑,μ↓一般情况下:低温:电离杂质散射为主温度↑,电离杂质散射↓,μ↑高温:晶格振动散射为主温度↑,晶格振动散射↑,μ↓随温度升高,晶格振动散射增强,载流子的平均自由时间变小,由此迁移率下降对于掺杂半导体,两种散射机制都必须考虑,温度很低时,晶格振动微弱,这是电离杂质散射占主导地位,电离杂质散射随温度升高反而减小,因此迁移率随温度升高增大的。