lingo解决规划问题——数学建模
- 格式:doc
- 大小:96.50 KB
- 文档页数:4
实验二:Lingo求解线性规划问题学时:4学时实验目的:掌握用Lingo求解线性规划问题的方法,能够阅读Lingo结果报告。
实验内容:1、求解书本上P130的习题1:某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表1所示,按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税,此外还有以下限制:1)政府及代办机构的证券总共至少要购进400万元;2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程序越高);3)所购证券的平均到期年限不超过5年。
表 1(1)若该经理有1000万元资金,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?列出线性规划模型,然后用Lingo求解,根据结果报告得出解决方案。
2、指派问题:6个人计划做6项工作,其效益如下表(”-”表示某人无法完成某项工作),3、有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低使用Lingo 的一些注意事项1. “>”与“>=”功能相同。
2. 变量与系数间相乘必须用”*”号,每行用”;”结束。
3. 变量以字母开头,不能超过8个字符。
4. 变量名不区分大小写(包括关键字)。
5. 目标函数用min=3*x1+2*x2或max=3*x1+2*x2的格式表示。
6. “!”后为注释。
7. 变量界定函数实现对变量取值范围的附加限制,共4种:@bin(x) 限制x 为0或1 @bnd(L,x,U) 限制L≤x≤U@free(x) 取消对变量x 的默认下界为0的限制,即x 可以取任意实数 @gin(x) 限制x 为整数 其他可见“Lingo 教程.doc ”如书上85页的Lindo 代码可改为如下Lingo 代码: max =72*x1+64*x2; x1+x2<50;12*x1+8*x2<480; 3*x1<100;例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码:min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
用lingo求解线性规划问题中国石油大学胜利学院程兵兵摘要食物营养搭配问题是现代社会中常见的问题,其最终的目的是节省总费用.本文通过对营养问题的具体剖析.构建了一般的线性规划模型。
并通过实例应用Lingo数学软件求解该问题.并给出了价值系数灵敏度分析,得出蔬菜价格的变动对模型的影响.关键词线性规划,lingo,灵敏度分析。
一、问题重述与分析营养师要为某些特殊病人拟订一周的菜单,可供选择的蔬菜及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分的最低数量如下表1所示。
有以下规定:一周内所用卷心菜不多于2份,其他蔬菜不多于4份。
问题一:若病人每周需要14份蔬菜,问选用每种蔬菜各多少份,可使生活费用最小.问题二:当市场蔬菜价格发生怎样波动时,所建模型的适用性。
表 1 所需营养和费用营养搭配是一个线性规划问题,在给定蔬菜的情况下,要求菜单所需的营养成分必须达到要求,并在此条件下求出什么样的搭配所花费的费用最少.第一个要求是满足各类营养的充足,根据表中数据列出不等式。
第二要求为问题一中,蔬菜的份数必须为14,第三要求为在一周内,卷心菜不多于2份,其他不多于4份,根据以上条件列出各类蔬菜份数的限定条件,并可表示出费用的表达式.对于第二问,就是价值系数的变化对总费用的影响,模型的适用范围。
三、模型假设第一,假设各蔬菜营养成分保持稳定,满足题干要求。
第二,假设各蔬菜价格在一定时间内保持相对稳定。
第三,假设各类蔬菜供应全部到位,满足所需要求量. 第四,假设所求出最优解时不要求一定为整数。
四、符号约定(1)Z 代表目标函数,此题即为费用。
(2)i c 为价值系数,此题即为每份蔬菜的价格。
下标i 代表蔬菜的种类。
(3)i x 为决策变量,表示各种蔬菜的数量。
(4)i b 为最低限定条件,表示蔬菜最低营养需要。
五、模型建立根据以上各种假设和符号约定,建立模型如下。
所求的值就是min,也就是最优化结果.s 。
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
数学建模值班lingo例题和答案
例1
某工厂有两条生产线,分别用生产M和P两种型号的产品,利润分别为200元/个和300元/个,生产线的最大生产能力分别为每日100和 120,生产线每生产一个M产品需要1个劳动日(1个工人工作8小时成为1个劳动日)进行调试、检测等工作,而每个P产品需要2个劳动日,该厂工人每天共计能提供160劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?
解:设两种产品的生产量分别为x和x,则
目标函数max z = 200x +300x,
例2
生产计划安排问题(@if函数的应用)。
某企业用A,B两种原油混合加工成甲、乙两种成品油销售。
数据见下表,表中百分比是成品油中原油A的最低含量。
成品油甲和乙的销售价与加工费之差分别为5和5.6(单位:千元/吨),原油A,B的采购价分别是采购量x(单位:吨)的分段函数
f(x)和g(x)(单位:千元/吨),该企业的现有资金限额为7200(千元),生产成品油乙的最大能力为2000吨。
假设成品油全部能销售出去,试在充分利用现有资金和现有库存的条件下,合理安排采购和生产计划,使企业的收益最大。
解:设原油A,B的采购量分别为x, y,原油A用于生产成品油甲、乙的数量分别为x,,原油B用于生产成品油甲、乙的数量分别为x1,x,则采购原油
A,B的费用分别为f(x)和g(x),目标函数是收益最大,约束条件有采购量约束,生产能力约束、原油含量约束、成品油与原油的关系、资金约束。
建立规划模型如下:
max z = 5(X1+x1)+5.6(X2+x2)- f(x)-g(x)。
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。