高中数学选修2-1新教学案:3.2立体几何中的向量方法(4)
- 格式:doc
- 大小:195.50 KB
- 文档页数:3
3.2 立体几何中的向量方法 3.2.3 向量法在空间垂直关系中的运用(名师:蒋力)一、教学目标 (一)核心素养通过这节课学习,掌握利用空间向量证明空间垂直关系. (二)学习目标1.利用直线方向向量证明空间中的线线垂直.2.利用直线方向向量和平面的法向量证明空间中的线面垂直. 3.利用平面的法向量证明空间中的面面垂直. 4.学会应用向量解决与垂直相关的探究性问题. (三)学习重点1.利用直线方向向量证明空间中的线线垂直.2.利用直线方向向量和平面的法向量证明空间中的线面垂直. 3.利用平面的法向量证明空间中的面面垂直. (四)学习难点1.对向量法证明空间垂直关系的理解. 2.对各种证明方法的熟练掌握. 二、教学设计 (一)课前设计 1.预习任务填一填:空间中垂直关系的向量表示 (1)线线垂直设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),且2220a b c ≠,则l m ⊥⇔a b ⊥ ⇔0a b = ⇔1212120a a bbc c ++=(2)线面垂直设直线l 的方向向量为a =(a 1,b 1,c 1),平面α内两相交向量1n =(a 2,b 2,c 2),()2333,,n a b c =则l α⊥ ⇔12,a n a n ⊥⊥ ⇔10a n = 且20a n =⇔a 1a 2+b 1b 2+c 1c 2=0且a 1a 3+b 1b 3+c 1c 3=0 . (3)面面垂直设平面α,β的法向量分别为1n =(a 1,b 1,c 1),2n =(a 2,b 2,c 2),则αβ⊥ ⇔12n n ⊥⇔_120n n = ⇔1212120a a bb c c ++=2.预习自测1.直线l 的一个方向向量为(1,2,0),直线m 的一个方向向量为(2,-1,0),则直线l 与直线m 的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 答案:C .解析:【知识点】用向量法判断两直线的位置关系 【解题过程】()()1,2,02,1,012+2-+00=0-=⨯⨯⨯(1) 点拨:两直线垂直即是其方向向量垂直.2.要证明直线与平面垂直,需要证明直线方向向量和平面内几条相交直线的方向向量垂直( ) A .1 B .2 C .3 D .4 答案:B .解析:【知识点】用向量法证明直线和平面垂直.【解题过程】证明线面垂直即证明直线与平面内两相交直线垂直. 点拨:利用直线和平面垂直的向量法判断.3.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直C .垂直D .不能确定 答案:C .解析:【知识点】用向量法证明平面和平面垂直 【解题过程】()()1,2,02,1,00-=点拨:证明面面垂直即证明两平面的法向量垂直. (二)课堂设计 1.知识回顾(1)怎样用向量法证明线线平行 (2)怎样用向量法证明线面平行 (3)怎样用向量法证明面面平行 2.问题探究探究一 结合实例,提炼出向量法证明空间垂直的方法★ ●活动 归纳提炼概念我们知道,利用直线的方向向量和平面的法向量,我们可以解决立体几何中的平行问题,那么空间中各种垂直是怎样用向量法证明的呢?(抢答)向量法除了可以证明空间中的平行问题,也可以证明空间中的垂直问题。
课题:3.2立体几何中的向量方法(第76-79课时)(周三、周四、周五、周一;2010年元月6日、7日、8日、11日)【教学目标】1.在学习了方向向量的基础上理解平面的法向量的概念,为进一步运用打好基础;2.学会由直线的方向向量和平面的法向量的关系及向量的运算来判断或证明直线、平面的位置关系;3.学会运用直线的方向向量、平面的法向量及向量的运算来解决关于直线、平面的夹角及距离的问题(主要是关于角的问题);4.能初步利用向量知识解决相关的实际问题及综合问题。
【教学重点】向量运算在立体几何证明与计算中的应用.【教学难点】在运用向量知识解决立体几何问题时的向量问题的转化与恰当的运算方式.【教学过程】一、双基回眸前面我们已经学习了空间向量的基本知识,并利用空间向量初步解决了一些立体几何问题,已初步感受到空间向量在解决立体几何问题中的重要作用,并从中体会到了向量运算的强大作用。
这一节,我们将全面地探究向量在立体几何中的运用,较系统地总结出立体几何的向量方法。
为此,首先简单回顾一下相关的基本知识和方法:1.直线l的方向向量的含义:.2.向量的特殊关系及夹角(最后的填空是用坐标表示)(1)a//b⇔⇔;(2)a⊥b⇔⇔;(3)a·a== ;(4)cos<a,b>== 。
二、创设情景前面,我们主要是利用向量的运算解决了立体几何中关于直线的问题,如:两直线垂直问题;两直线的夹角问题;特殊线段的长的问题等等……若再加入平面,会出现更多的的问题,如:线面、面面的位置关系问题;线面的夹角问题;二面角的问题等等……而且都是立体几何中的重要问题,这些问题用向量的知识怎样来解决呢?直线可由其方向向量确定并由其来解决相关的问题,平面又由怎样的向量来确定呢?——这些问题就是我们将要探究或解决的主要问题……三、合作探究同学们都知道:垂直于同一条直线的两个平面。
由此我们应该会想象出怎样的向量可确定平面的方向了……下面请同学们合作探究一下这方面的知识和方法:(一).平面的法向量:。
§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,12 -).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),a=(0,-8,12).解(1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-13b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,12 -),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-35v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=(0,-8,12),∴u=-14a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则可求得M (0,1,12),N (12,1,1), D(0,0,0),A 1(1,0,1),B(1,1,0), 于是MN =(12,0,12), 设平面A 1BD 的法向量是 n=(x ,y ,z ). n =(x ,y ,z).则n ·DB =0,得0,0,x z x y +=⎧⎨+=⎩取x =1,得y =-1,z =-1.∴n =(1,-1,-1).又 MN ·n = (12,0,12)·(1,-1,-1)=0, 方法二 ∵MN = 111111122C N C M C B C C -=-111111()22D A D D DA =-=∴MN ∥1DA ,又∵MN ⊄平面A 1BD.∴MN ∥平面A 1BD.知识点三 利用向量方法证明垂直问题在正棱锥P —ABC 中,三条侧棱两两互相垂直,G 是△PAB 的重心,E 、F分别为BC 、PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是PG 与BC 的公垂线段. 证明 (1)方法一如图所示,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.令PA =PB =PC =3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0). 于是PA =(3,0,0),FG =(3,0,0),故 PA =3FG ,∴PA ∥FG .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又FG ⊂平面EFG ,∴平面EFG ⊥平面PBC. 方法二 同方法一,建立空间直角坐标系,则 E(0,2,1)、F(0,1,0)、G(1,1,0).EF =(0,-1,-1),EG =(0,-1,-1),设平面EFG 的法向量是n =(x ,y ,z), 则有n ⊥EF ,n ⊥PA ,∴0,0,y z x y z +=⎧⎨--=⎩令y =1,得z =-1,x =0,即n =(0,1,-1).而显然PA =(3,0,0)是平面PBC 的一个法向量.这样n ·PA = 0,∴n ⊥PA即平面PBC 的法向量与平面EFG 的法向量互相垂直,∴平面EFG ⊥平面PBC. (2)∵EG =(1, -1, -1),PG =(1,1,0),BC =(0, -3,3),∴EG ·PG =1-1= 0,EG ·BC =3-3 = 0,∴EG ⊥PG ,EG ⊥BC , ∴EG 是PG 与BC 的公垂线段.知识点四 利用向量方法求角四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABCD 所成的角为60°,在四边形ABCD 中,∠D =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线PA 与BC 所成角的余弦值.解 (1)如图所示,以D 为原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D —xyz ,∵∠D =∠DAB =90°,AB =4,CD =1,AD =2, ∴A(2,0,0),C(0,1,0),B(2,4,0).由PD ⊥面ABCD 得∠PAD 为PA 与平面ABCD 所成的角. ∴∠PAD =60°.在Rt △PAD 中,由AD =2,得PD =23. ∴P(0,0,23). (2)∵PA =(2,0,-23), BC =(-2, -3,0)∴cos 〈PA ,BC 〉=1313PA BC PA BC⋅=-∴PA与BC所成角的余弦值为1313.正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA与平面MNB所成二面角的余弦值.解取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=64,,AB AG GB=+,设〈AG,GB〉=θ,AB2=AG 2+2AG·GB+GB2,∴1=(64)2+2×64×64cosθ+(64)2.∴cosθ=13,故所求二面角的余弦值为13.方法二以B为坐标原点,BA,BE,BC所在的直线分别为x轴、y轴、z轴建立空间直角坐标系B-xyz则M(12,0,12),N (12,12,0),中点G(12,14,14),A(1,0,0),B(0,0,0),由方法一知∠AGB为二面角的平面角或其补角.∴GA=(12,-14,-14),GB=(12,-14,-14),∴ cos<GA, GB>=GA GBGA GB⋅=11833388-=-⨯,故所求二面角的余弦值为13.方法三 建立如方法二的坐标系,∴110,0,AM n AN n ⎧⋅=⎪⎨⋅=⎪⎩ 即110,22110,22x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩取n 1=(1,1,1).同理可求得平面BMN 的法向量n 2=(1,-1,-1). ∴cos 〈n 1,n 2〉=1212n n n n ⋅1333==-⨯,故所求二面角的余弦值为13知识点五 用向量方法求空间的距离已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.解如图所示,以C 为原点,CB 、CD 、CG 所在直线分别为x 、y 、z 轴建立空间直角坐标系C -xyz.由题意知C(0,0,0),A(4,4,0), B(4,0,0),D(0,4,0),E(4,2,0), F(2,4,0),G(0,0,2).BE =(0,2,0),BF =(-2,4,0),设向量BM ⊥平面GEF ,垂足为M ,则M 、G 、E 、F 四点共面,故存在实数x ,y ,z ,使BM = x BE + y BF + z BG ,即BM = x (0,2,0)+y (-2,4,0)+z (-4,0,2) =(-2y -4z ,2x+4y ,2z ).由BM ⊥平面GEF ,得BM ⊥GE ,BM ⊥EF ,于是BM ·GE =0,BM ·EF =0, 即(24,24,2)(4,2,2)0,(24,24,2)(2,2,0)0,y x x y z y z x y z --+⋅-=⎧⎨--+⋅-=⎩即50,320,1,x zx y zx y z-=⎧⎪+++⎨⎪++=⎩,解得15,117,113,11xyz⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴BM=(-2y-4z,2x+4y,2z)=226,,111111⎛⎫⎪⎭⎝∴|BM|=222226()()()111111++21111=即点B到平面GEF的距离为21111.考题赏析(安徽高考)如图所示,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=4π,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求异面直线AB与MD所成角的大小;(2)求点B到平面OCD的距离.解作AP⊥CD于点P.如图,分别以AB、AP、AO所在直线为x、y、z轴建立平面直角坐标系.A(0,0,0),B(1,0,0),P (0,22,0),D (-22,22,0),O(0,0,2),M(0,0,1).(1)设AB与MD所成角为θ,∵AB=(1,0,0),MD=(-22,22,-1),∴cosθ =12AB MDAG MD⋅=⋅.∴θ=3π.∴AB与MD所成角的大小为3π.(2)∵OP=(0,22,2-),OD=(-22,22,2-),∴设平面OCD的法向量为n = ( x, y , z ),则n·OP=0,n·OD= 0.得220,22220,22y zx y z⎧-=⎪⎪⎨⎪-+-=⎪⎩取z=2,解得n = (0,4,2).设点B到平面OCD的距离为d,则d为OB在向量n上的投影的绝对值.∵OB=(1,0,-2),∴d=OB nn⋅23=,∴点B到平面OCD的距离为23,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( ) A.(33,33,-33) B.(33,-33,33)C.(-33,33,33) D.(-33,-33,-33)答案 DAB=(-1,1,0),是平面OAC的一个法向量.AC=(-1,0,1),BC=(0,-1,1)设平面ABC的一个法向量为n=(x,y,z)∴0,0,x yx z-+=⎧⎨-+=⎩令x=1,则y=1,z=1 ∴n=(1,1,1)单位法向量为:nn±=± (33,33,33).2.已知正方体ABCD—A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2,-2),l2的方向向量b=(-2,3,m),若l1⊥l2,则m=( )A.1 B.2 C.12D.3答案 B解析因l1⊥l2,所以a·b=0,则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4,即m=2.4.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确答案 A解析因v=-3u,∴v∥u.故α∥β.5.已知a、b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的角是( )A.30°B.45°C.60°D.90°答案 C解析设〈AB,CD〉=θ,AB·CD=(AC+CD+DB·CD= |CD|2= 1,cosθ=12AB CDAB CD⋅=,所以θ=60°6.若异面直线l1、l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值等于( )A.25-B.25C.-255D.55答案 B解析设异面直线l1与l2的夹角为θ,则cosθ=a ba b⋅⋅(1)44255416-⨯==⨯⋅+7.已知向量n=(6,3,4)和直线l垂直,点A(2,0,2)在直线l上,则点P(-4,0,2)到直线l 的距离为________.答案366161, 解析PA =(6,0,0),因为点A 在直线l 上, n 与l 垂直,所以点P 到直线l 的距离为2223636616161634PA n⋅==++ 8.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________.答案3π或23π,解析 设n 1=(1,0,-1),n 2=(0,-1,1) 则cos 〈n 1,n 2〉=100(1)(1)11222⨯+⨯-+-⨯=-⋅〈n 1,n 2〉=23π.因平面α与平面β所成的角与〈n 1,n 2〉相等或互补,所以α与β所成的角为3π或23π.9.已知四面体顶点A(2,3,1)、B(4,1,-2)、C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC 的距离为________.答案 11解析 设平面ABC 的一个法向量为n =(x,y,z )则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩ ()()x,y,z (2,2,3)0,x,y,z (4,0,6)0,⋅--=⎧⎪⎨⋅=⎪⎩ 2230,460,x y z x z --=⎧⎨+=⎩2,2,3y x z x =⎧⎪⇒⎨=-⎪⎩令x=1, 则n = (1,2, 23-),AD =(-7,-7,7)故所求距离为14714377311374149AD nn---⋅==⨯=++,10.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥平面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于F.(1)证明:PA ∥平面BDE ; (2)证明:PB ⊥平面DEF.证明 (1)如图建立空间直角坐标系,设DC =a ,AC ∩BD =G ,连结EG ,则A(a,0,0),P(0,0,a),C(0,a,0),E (0,2a ,2a ),G (2a ,2a,0). 于是PA =(a ,0, -a ),EG =(2a ,0,2a-),∴PA = 2EG ,∴PA ∥EG .又EG ⊂平面DEB.PA ⊄平面DEB.∴PA ∥平面DEB.(2)由B(a,a,0),得PB =(a, a, -a), 又DE =(0, 2a ,2a),∵PB ·DE =22a 20,2a -= ∴PB ⊥DE.又EF ⊥PB ,EF ∩DE=E ,∴PB ⊥平面EFD.11.如图所示,已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小. 解如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D —xyz. 则DA =(1,0,0),'CC = (0,0,1).连结BD,B ′D ′. 在平面BB ′D ′D 中,延长DP 交B ′D ′于H. 设DH = (m,m,1) (m>0),由已知〈DH ,DA 〉= 60°, 由DA ·DH = |DA ||DH |cos 〈DH ,DA 〉,可得2m =221m + 解得m =22,所以DH =(22,22,1), (1) 因为cos 〈DH ,'CC 〉= 220011222212⨯+⨯+⨯=⨯ (2) 所以〈DH ,'CC 〉= 45°, 即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC = (0,1,0).因为cos 〈DH ,DC 〉= 220011222212⨯+⨯+⨯=⨯ 所以〈DH ,DC 〉= 60°,可得DP 与平面AA ′D ′D 所成的角为30°.12. 如图,四边形ABCD 是菱形,PA ⊥平面ABCD ,PA=AD=2,∠BAD=60°.平面PBD ⊥平面PAC ,(1)求点A 到平面PBD 的距离;(2)求异面直线AB 与PC 的距离.(1)解 以AC 、BD 的交点为坐标原点,以AC 、BD 所在直线为x 轴、y 轴建立如图所示的空间直角坐标系,则A (3,0,0),B (0,1,0),C (3-,0,0),D (0, -1,0),P (3,0,2).设平面PBD 的一个法向量为n 1=(1,y 1,z 1).由n 1⊥OB , n 1⊥OP ,可得n 1=(1,0,32-).(1)OA =(3,0,0),点A 到平面PBD 的距离,11OA n d n ⋅=2217=, 13.如图所示,直三棱柱ABC —A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC = 2a ,BB 1 = 3a ,D 为A 1C 1的中点,在线段AA 1上是否存在点F ,使CF ⊥平面B 1DF ?若存在,求出|AF |;若不存在,请说明理由.解 以B 为坐标原点,建立如图所示的空间直角坐标系B-xyz.假设存在点F ,使CF ⊥平面B 1DF ,并设AF =λ1AA =λ(0,0,3a )=(0,0,3λa )(0<λ<1), ∵D 为A 1C 1的中点,∴D(22a ,22a ,3a) 1B D = (22a ,22a ,3a)-(0,0,3a)= (22a ,22a , 0), 1B F 1B B BA AF =++=(0,0,3)(2,0,0)(0,0,3)a a a λ-++ ∵CF ⊥平面B 1DF ,∴CF ⊥1B D , CF ⊥1B F ,110,0,CF B D CF B F ⎧⋅=⎪⎨⋅=⎪⎩ 即2300,9920,a λλλ⨯=⎧⎨-+=⎩ 解得λ=23或λ=13 ∴存在点F 使CF ⊥面B 1DF ,且 当λ=13时,|AF |=13,|1AA | = a 当λ=23,|AF | =23,|1AA | = 2a. 14.如图(1)所示,已知四边形ABCD 是上、下底边长分别为2和6,高为eq \r(3)的等腰梯形.将它沿对称轴OO 1折成直二面角,如图(2).(1)证明:AC ⊥BO 1;(2)求二面角O —AC —O 1的余弦值.(1)证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB. 故以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, 3)、O 1(0,0, 3).AC ·1BO =-3+3·3=0.所以AC ⊥BO 1.(2)解 因为1BO ·OC =3-+ 3·3=0.所以BO 1⊥OC.由(1)AC ⊥BO 1,所以BO 1⊥平面OAC, 1BO 是平面OAC 的一个法向量.设n=(x ,y ,z )是平面O 1AC 的一个法向量,由10,0,n AC n O C ⎧⋅=⎪⎨⋅=⎪⎩330,0,x y z y ⎧-++=⎪⇒⎨=⎪⎩ 取z= 3,得n=(1,0,3).设二面角O-AC-O 1的大小为θ,由n 、1BO 的方向可知θ=〈n,1BO 〉, 所以cos θ= cos 〈n ,1BO 〉=113n BO n BO ⋅= 即二面角O —AC —O 13。
第一课时: §3.2立体几何中的向量方法(一)教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题;⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题.二、例题讲解1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥. 证明:·OC AB =·()OC OB OA - =·OC OB -·OC OA .∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =,·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =.∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D 间的距离.解:由AC α⊥,可知AC AB ⊥.由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD )=22222cos120b a b b +++=22a b +.∴CD =3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.解:∵MN =1(')2CC BC +,'CD ='CC CD +,∴·'MN CD =1(')2CC BC +·(')CC CD +=12(2|'|CC +'CC CD +·'BC CC +·BC CD ).∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =,·'0BC CC =,·0BC CD =, ∴·'MN CD =122|'|CC =12. …求得 cos <,'MN CD >12=,∴<,'MN CD >=60. 4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.三、巩固练习 作业:课本P 116 练习 1、2题.教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入讨论:将立体几何问题转化为向量问题的途径?(1)通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题;(2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问题.二、例题讲解1. 出示例1: 如图,在正方体1111ABCD A B C D -中,E 、F 分别是1BB 、CD 的中点,求证:1D F ⊥平面ADE .证明:不妨设已知正方体的棱长为1个单位长度,且设DA =i ,DC =j ,1DD =k .以i 、j 、k 为坐标向量建立空间直角坐标系D -xyz ,则∵AD =(-1,0,0),1D F =(0,12,-1),∴AD ·1D F =(-1,0,0)·(0,12,-1)=0,∴1D F ⊥AD .又 AE =(0,1,12),∴AE ·1D F =(0,1,12)·(0,12,-1)=0, ∴1D F ⊥ AE . 又 AD AE A =, ∴1D F ⊥平面ADE .说明:⑴“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关的一些数据,以使问题的解决简单化.如在立体几何中求角的大小、判定直线与直线或直线与平面的位置关系时,可以约定一些基本的长度.⑵空间直角坐标些建立,可以选取任意一点和一个单位正交基底,但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在恰当的位置,才能方便计算和证明.2. 出示例2:课本P 116 例3分析:如何转化为向量问题?进行怎样的向量运算?3. 出示例3:课本P 118 例4分析:如何转化为向量问题?进行怎样的向量运算?4. 出示例4:证:如果两条直线同垂直于一个平面,则这两条直线平行.改写为:已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.求证:OA //BD . 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设BD =(,,)x y z .∵BD ⊥α, ∴BD ⊥i ,BD ⊥j ,∴BD ·i =(,,)x y z ·(1,0,0)=x =0,BD ·j =(,,)x y z ·(0,1,0)=y =0,∴BD =(0,0,z ).∴BD =z k .即BD //k .由已知O 、B 为两个不同的点,∴OA //BD .5. 法向量定义:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α.如果a ⊥α,那么向量a 叫做平面α的法向量.6. 小结:向量法解题“三步曲”:(1)化为向量问题 →(2)进行向量运算 →(3)回到图形问题.三、巩固练习 作业:课本P 120、 习题A 组 1、2题.教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入1. 法向量定义:如果直线l α⊥平面, 取直线l 的方向向量为a ,则向量a 叫作平面α的法向量(normal vectors ). 利用法向量,可以巧妙的解决空间角度和距离.2. 讨论:如何利用法向量求线面角? → 面面角?直线AB 与平面α所成的角θ,可看成是向量AB 所在直线与平面α的法向量所在直线夹角的余角,从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角,根据两个向量所成角的余弦公式cos ,a b a b a b =,我们可以得到如下向量法的公式: sin cos ,AB n AB n AB n θ==.3. 讨论:如何利用向量求空间距离?两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长.点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长.二、例题讲解:1. 出示例1:长方体1111ABCD A B C D -中,AD =1AA =2,AB =4,E 、F 分别是11A D 、AB 的中点,O 是11BC B C 与的交点. 求直线OF 与平面DEF 所成角的正弦.解:以点D 为空间直角坐标系的原点,DA 、DC 、1DD 为坐标轴,建立如图所示的空间直角坐标系. 则(2,2,0),(1,0,2),(2,2,0),(1,4,1),(0,4,0)D E F O C .设平面DEF 的法向量为 (,,)n x y z =,则n DE n DF ⎧⊥⎪⎨⊥⎪⎩ , 而(1,0,2)DE =, (2,2,0)DF =. ∴ 00n DE n DF ⎧=⎪⎨=⎪⎩ ,即20220x z x y +=⎧⎨+=⎩, 解得::2:2:1x y z =-, ∴ (2,2,1)n =-. ∵ ||||cos n OF n OF α∙= , 而(1,2,1)OF =--.∴ cos α=2||||(11(2)n OF n OF ∙==∙-+-所以,直线OF 与平面DEF 所成角的正弦为7618. 2. 变式: 用向量法求:二面角1A DE O --余弦;OF 与DE 的距离;O 点到平面DEF 的距离. 三、巩固练习作业:课本P 121、 习题A 组 5、6题.。
立体几何中的向量方法课时分配:第一课立体几何中的向量方法1个课时第二课立体几何专1个课时第三课立体几何中的向量方法——求点坐标1个课时3. 2.1 立体几何中的向量方法【教学目标】1)知识与技能:进一步体会空间向量在解决立体几何问题中的广泛作用,再次熟悉立体几何中的向量方法“三步曲”;继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性;对立体几何中的三种方法(综合法、向量法、坐标法)的联系进行分析与小结.(2)过程与方法:在解决问题中,通过数形结合与问题转化的思想方法,加深对相关内容的理解。
(3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。
【教学重点】坐标法与向量法结合【教学难点】适当地建立空间直角坐标系及添加辅助线.【学前准备】:多媒体,预习例题PB ⊥)1,,(-z y x )1,1,-021=所以=EDB 平面333(,,,21,0(213161=60的大小为D -2,=BA CD异面直线AB与CD所成角的余弦值为BD 1C 1B 1CDBA A 1EF 3,如下图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且分MN 所成的定比为2,现用基向量、、表示向量,设=x+y+z,则x 、y 、z 的值分别为A.x =,y =,z =B.x =,y =,z =C.x =,y =,z =D.x =,y =,z =(中等题)5,如图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB=FB=1,.求直线EC 1与FD 1所成的余弦值.解:以1,,DA DC DD 分别为,,x y z 轴建立坐标系,则E (3,3,0)、C 1(0,4,2)、D 1(0,0,2)、F (2,4,0).从而1EC =(-3,1,2)、1FD =(-2,-4,2)所以直线EC 1与FD 1所成的余弦值为 11,cos FD EC =||||1111FD EC FD EC ∙∙=1421立体几何专题【教学目标】内容:考查(1)空间几何体:结构特征、三视图、表面积和体积的计算. 常给出几何体的三视图,通过识图、想图、作图、用图,考查学生的空间想象能力及运算求解能力.(2)空间直线与平面的位置关系:线、面平行与垂直关系的判断和证明,其中垂直关系出现频率更高.空间角的计算,其中二面角的计算是理科生的重点,文科生则不做要求;三是空间距离的计算,重点考查点到平面的距离.如在文科高考解答题中,第(2)问往往要计算几何体的体积,其关键是求出点到平面的距离. (3)空间向量与立体几何:考查利用空间向量研究空间直线与平面的位置关系;利用空间向量求角和距离.一般地,论证平行与垂直关系,传统方法较方便,而在求空间角和空间距离上,则可显示出向量法的优越性.方法:解答题的命制,课标卷都采用了“一题多法”的命制办法,并体现向量坐标法优先的特征. 即同一试题可以用综合法(传统的方法)和空间向量两种方法来解决(向量法优先)强调数学通性通法的考查,淡化特殊技巧,无偏怪之题.立体几何专题的考查,理科和文科试卷,都强调对基础知识和基本能力的考查.文科相对强调几何的直观感知和简单的推理论证;而理科对空间想象、推理论证、运算求解有更高的要求.【学前准备】:多媒体,预习例题的面积为. 如图,在棱长为2的正方体到直线CC 1的距离的最小值为62的体积V)时,可,试判断V与V的大立体几何中的向量方法——求点坐标【教学目标】知识与技能:1、能够根据具体的立体图形寻找适当的位置建立空间直角坐标系;2、能够运用投影的知识解决相关点的坐标;3、能够利用中点坐标公式或者线段的比例关系解决相关点的坐标;4、能够掌握向量的相等、基本运算和共线等知识并应用于求点的坐标。
绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。
3.2 立体几何中的向量方法-人教A版选修2-1教案一、教学目标1.了解向量的概念和性质;2.掌握立体几何中向量的加、减、数量积、向量积的计算方法;3.能够应用向量方法解决立体几何相关问题。
二、教学重点1.理解概念,掌握向量的加、减、数量积、向量积的计算方法;2.能够应用向量方法解决立体几何相关问题。
三、教学难点能够运用向量方法解决立体几何中的复杂问题。
四、教学内容及教学方法(一)教学内容本节课主要内容为立体几何中的向量方法,包括以下几个部分:1. 向量的概念和性质1.向量的定义;2.向量的模和方向;3.零向量和单位向量;4.向量的共线和平行;5.向量的反向和相等。
2. 向量的加减法1.向量的加法和减法定义;2.向量加减法的运算法则;3.向量相加减的几何意义。
3. 向量的数量积1.向量数量积的定义;2.向量数量积的运算法则;3.向量数量积的几何意义;4.向量数量积的性质。
4. 向量的向量积1.向量向量积的定义;2.向量向量积的运算法则;3.向量向量积的几何意义;4.向量向量积的性质。
(二)教学方法课堂教学应采用讲授与练习相结合的方法,通过引入具体的数学问题,逐步引入概念和定义,然后逐步将概念和定义转化为解决数学问题的方法。
在讲授的过程中,注意抓住学生对问题的兴趣点,让学生积极思考,在实际问题中理解各个概念和公式的含义。
五、教学过程安排(一)引入通过引入相关的实际问题,引发学生的兴趣和思考,达到引入立体几何中的向量方法的目的。
(二)概念和性质1.向量的定义和性质引入向量的定义和性质,引导学生理解向量的概念和性质,并能够熟练应用各种性质。
2.向量的共线和平行讲解向量的共线和平行的概念,巩固向量的基础概念。
3.向量的反向和相等讲解向量的反向和相等的概念,引导学生加深对向量的认识。
(三)向量的加减法通过具体例子引导学生理解向量加减的运算法则,并能够运用向量加减法解决实际问题。
1.向量加减法的定义和性质引导学生理解向量加减法的概念和性质,并掌握加减法的运算法则。
3.2 立体几何中的向量方法
(第 4 课时)
【教学目标】
能用向量方法解决异面直线所成的角与线面角的计算问题. 【重点】
异面直线所成的角与线面角的计算. 【难点】
异面直线所成的角与线面角的计算.
【创设情景】
1.异面直线所称的角、线面角的定义及求解方法.
2.向量的夹角公式.
【预习提纲】
(根据以下提纲,预习教材第 107 页~第 108 页) 1.直线的方向向量在求异面直线所成的角时的应用:
2.法向量在求线面角中的应用:
原理:设平面β的斜线l 与平面β所的角为α1,斜线l 与平面β的法向量所成角α2,则α1与α2互余或与α2的补角互余。
【基础练习】
1.
要求:5个题目,带答案. 【典型例题】
例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=4
1
A 1
B 1,D 1F 1=
4
1
D 1C 1,求B
E 1与D
F 1所成的角的大小。
【审题要津】
解1:(几何法)作平行线构造两条异面直线所成的角AHG ∠
17
15cos =
∠AHG 解2:(向量法)设b F D a DD ==111,4,则||||b a =且⊥
2
22212117)4(||||a b a BE DF =+
== 2
1115)4)(4(a b a b a BE DF =-+=⋅
17
15|
|||,cos 111111=
>=
<DF BE BE 解3:(坐标法)设正方体棱长为4,以1,,DD DC DA 为正交基底,建立如图所示空间坐标系xyz D -
)4,1,0(1-=BE ,)4,1,0(1=DF ,⋅1BE 1DF =15 17
15
|
|||,cos 1111=
>=
<DF BE DF BE 【方法总结】
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且
=
11E D 4
1
D 1C 1,试求直线
E 1
F 与平面D 1AC 所成角的大小 【审题要津】
解:设正方体棱长为1,以1,,DD 为单位正交基底,建立如图所示坐标系D -xyz
1DB 为D 1AC 平面的法向量,)1,1,1(1=DB
)1,43
,21(1-=F E
87
87,cos 11>=
<F E DB 所以直线E 1F 与平面D 1AC 所成角的正弦值为87
87 【方法总结】
在三棱锥S —ABC 中,∠SAB
=∠SAC =∠ACB =90°,AC =2,BC =13,SB (1)求证:SC ⊥BC ;
(2)求SC 与AB 所成角的余弦值
解:如图,取A 为原点,AB 、AS 分别为y 、z 轴建立空间直角坐标系,则有AC =2,
BC =13,SB =29,得B (0,17,0)、S (0,0,23)、C (2
1713,174
,0), ∴SC =(217
13,17
4,-23),CB =(-217
13,17
13
,0)
(1)∵
SC ·
CB
=0,∴SC ⊥BC
(2)设SC 与AB 所成的角为α,
∵AB =(0,17,0),SC ·AB =4,|SC ||AB
|=417,
∴cos α=17
17
,即为所求。