椭圆标准方程及其性质知识点大全
- 格式:doc
- 大小:286.50 KB
- 文档页数:4
高中数学椭圆知识点公式大全椭圆是一种重要的数学曲线,几何上可以看作是平面内与两个定点F1、F2和总距离为2a的动点P的轨迹,数学上可以通过方程来描述。
椭圆的性质和公式涉及到椭圆的焦点、顶点、长轴、短轴、离心率等概念,下面将详细介绍高中数学椭圆的知识点公式。
一、椭圆的定义与性质1.定义:椭圆是平面上与两个定点F1、F2的距离之和等于定值2a的点的轨迹。
2.基本性质:a.焦半径定理:过椭圆上任意一点P引两条直线分别与两焦点相交于A和B,则AP+BP=2a。
b.反奇异性:椭圆上任意一条直线与两个焦点的连线的夹角等于该直线到两个离心点的距离之差的绝对值。
c.双曲率定理:椭圆上任意一点的曲率半径之和等于椭圆的长轴和短轴的和。
d.弦长定理:椭圆上任意两点P、Q的弦长PQ满足PQ^2=PF1^2+PF2^2+2a^2二、椭圆的方程1.标准方程:椭圆的标准方程有两种形式:a.第一种形式:(x^2/a^2)+(y^2/b^2)=1,其中a为长轴的一半,b 为短轴的一半。
b.第二种形式:(x^2/b^2)+(y^2/a^2)=1,其中a为长轴的一半,b 为短轴的一半。
2.直角坐标系下其他形式方程:a.椭圆的顶点在原点的方程:x^2/a^2+y^2/b^2=1b.椭圆的中心在原点的方程:(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)为中心坐标。
c.椭圆的顶点在y轴上的方程:(x-h)^2/a^2+y^2/b^2=1d.椭圆的顶点在x轴上的方程:x^2/a^2+(y-k)^2/b^2=13. 极坐标系下的方程:r = (a * b) / sqrt(b^2 cos^2 θ + a^2 sin^2 θ),其中(a, b)为半轴。
三、椭圆的重要参数1.焦距:引如椭圆的两个焦点之间的距离,记为2c。
2.离心率:e=c/a,表示焦点与顶点之间的距离与长轴的比值。
3.焦点坐标:F1(-c,0),F2(c,0)。
【椭圆】一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 三、椭圆的性质(以12222=+by a x )0(>>b a 为例)1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b分别叫做椭圆的长半轴长和短半轴长。
4、离心率:① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
椭圆知识点总结乐乐课堂一、椭圆的定义椭圆是平面上满足一定几何关系的点的集合。
通常我们可以用平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹来定义椭圆。
其中,F1和F2称为椭圆的焦点,2a 称为椭圆的长轴,a称为椭圆的半长轴。
二、椭圆的标准方程为了更好地描述椭圆,我们通常使用坐标系来表示椭圆的形状。
椭圆的标准方程如下:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)是椭圆的中心坐标,a、b分别是椭圆的半长轴和半短轴。
当椭圆的长轴与x 轴重合时,称椭圆的标准方程为横轴方程;当椭圆的长轴与y轴重合时,称椭圆的标准方程为纵轴方程。
三、椭圆的性质1. 椭圆的焦点定理椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长。
2. 椭圆的离心率椭圆的离心率是描述椭圆形状狭长程度的重要参数。
离心率的计算公式如下:e = √(1 - b²/a²)其中,e表示椭圆的离心率,a表示椭圆的半长轴,b表示椭圆的半短轴。
3. 椭圆的几何性质椭圆具有很多重要的几何性质,如椭圆的对称性、椭圆的切线、椭圆的法线等。
这些性质在解决问题中有着重要的应用价值。
四、椭圆的相关定理1. 椭圆的焦点方程椭圆的焦点方程为:x = h ± aey = k其中,(h, k)是椭圆的中心坐标,a、b分别是椭圆的半长轴和半短轴。
2. 椭圆的切线方程椭圆上一点P(x0, y0)处的切线方程为:xx0/a² + yy0/b² = 13. 椭圆的法线方程椭圆上一点P(x0, y0)处的法线方程为:yx0/a² + xx0/b² = b²/a²五、椭圆的应用椭圆在实际生活和工程领域中有着广泛的应用。
例如,在天文学中,行星的轨道往往是椭圆;在工程领域中,椭圆的形状被用来设计一些机械零件和建筑结构。
因此,掌握椭圆的相关知识对于解决实际问题具有重要的意义。
有关椭圆的所有知识点
1. 椭圆的定义:椭圆是一种特殊的抛物线,它是二维平面上的曲线,其中两条轴的长度不相等,椭圆的方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
2. 椭圆的性质:
(1)椭圆的对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的中心点是两个对称轴的交点;
(3)椭圆的长轴和短轴的长度分别为a和b,椭圆的面积为S=πab;
(4)椭圆的边界是一个抛物线,称为椭圆弧,可以用参数方程表示:$$x=a\cos t,
y=b\sin t$$
3. 椭圆的标准方程:
(1)椭圆的标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(2)椭圆的中心在原点时,标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(3)椭圆的中心在(h,k)处时,标准方程为:$$\frac{(x-h)^2}{a^2}+\frac{(y-
k)^2}{b^2}=1$$
4. 椭圆的对称性:
(1)椭圆是一种具有对称性的曲线,其对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的对称性可以用参数方程表示:$$x=a\cos t,y=b\sin t$$
(3)椭圆的对称性可以用参数方程表示:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
5. 椭圆的离心率:椭圆的离心率是椭圆的一个重要参数,它可以表示椭圆的形状,它的定义是:椭圆的离心率等于椭圆的长轴与短轴之比,即:$$e=\frac{a-b}{a}$$。
一.椭圆曲线的介绍1.域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:y2=x3+ax+b,(x,y)∈k2,a,b为k中常数,并且右边判别式Δ=−16(4a3+27b2)不等于0(即为了光滑性要求无重根)。
其上的点可以自然地有一个群结构(实数域为例,图自wiki):具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。
不难看出曲线y2=x3+ax+b,(x,y)∈k2关于x轴对称,R 的对称点就记为P+Q。
这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。
定义保证如下性质:随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),那么P+Q+R=0.这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):P,Q不重合时:P,Q重合时:总之在椭圆曲线上有一个交换群结构,因此我们可以从y2=x3+ax+b,(x,y)∈k2的一个有理解生成新的有理解,从而得到许多有理解。
椭圆曲线在复数域的图像可以看成复平面模掉一格C/Λ,也就是一个环面:Q上图像可直观想象是实数域的椭圆曲线上的有理点:(图自《数论1 FERMAT的梦想和类域-加藤和也》)而Qp等非阿局部域及Z/pZ等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。
此时不妨就把它看成代数几何意义上的一条曲线。
为了理解为什么椭圆曲线定义成y^2=三次多项式,我们简单讨论一番。
上面已经说过,我们希望找一些好的f,使得f=0即解全体带群结构。
而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。
椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。
椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。
二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。
2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。
3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。
4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。
5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。
7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。
三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。
2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。
因此,椭圆和圆可以看作是同一种几何图形的不同特例。
四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。
2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。
3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。
4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。
五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。
2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。
3. 椭圆的面积可以通过积分求解,面积公式为S = πab。
4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。
六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。
椭圆的性质及知识点总结一、椭圆的定义和基本性质1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
设d1和d2分别表示P到F1和F2的距离,则椭圆的定义可以用数学表达式表示为|d1 + d2| = 2a 。
1.2 椭圆的基本性质(1)椭圆对称轴:椭圆有两个对称轴,分别称为长轴和短轴。
长轴的端点是两个焦点F1和F2,短轴与长轴垂直并通过椭圆的中心点。
(2)椭圆的焦点和离心率:椭圆的焦点是定义椭圆的两个定点F1和F2,离心率e是一个表示椭圆形状的参数,e的取值范围是0<e<1。
(3)椭圆的三大定律:椭圆有三个基本定律,分别是:(a)椭圆内到两个焦点的距离之和等于长轴的长度;(b)椭圆内到两个焦点的距离之差等于长轴的长度;(c)椭圆的面积等于πab,其中a和b分别是长轴和短轴的长度。
1.3 椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是长轴和短轴的长度,椭圆的中心点位于原点(0,0)。
二、椭圆的相关知识点2.1 椭圆的离心率椭圆的离心率e的定义是e=c/a,其中c为焦距,a为长半轴的一半。
离心率越接近于0,椭圆形状越圆;离心率越接近于1,椭圆形状越扁。
2.2 椭圆的参数方程椭圆也可以用参数方程表示,参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b分别是长轴和短轴的长度。
2.3 椭圆的焦半径椭圆的焦半径是指从椭圆的焦点到该椭圆上的任意一点P的距离,椭圆上各点的焦半径之和等于椭圆的周长。
2.4 椭圆的切线椭圆上的切线有一个特点:与椭圆相切的切线在切点处与切线的法线垂直。
根据这个特点可以求出椭圆上任意一点处的切线方程。
2.5 椭圆的焦点坐标椭圆的焦点坐标可以通过椭圆的离心率和焦距来求解。
焦点坐标为(±ae, 0),a为长轴的一半,e为椭圆的离心率。
2.6 椭圆的面积椭圆的面积可以通过参数法求解,面积为πab,其中a和b分别是长轴和短轴的长度。
【专题七】椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2离心率①(01)c e e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
椭圆知识点归纳总结椭圆的定义可以用数学表达式表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中a和b分别表示椭圆的主轴长度和次轴长度,椭圆的标准方程为椭圆定点到F1、F2的距离之和等于常数2a的定点轨迹的数学描述。
椭圆是一种非常基本的几何图形,具有许多独特的性质和特点。
本文将对椭圆的性质、参数方程、焦点、直径、离心率、焦距、渐近线、面积等方面进行归纳总结。
第一部分:椭圆的基本性质1.1 椭圆的定义和参数1.2 椭圆的性质1.3 椭圆的对称性1.4 椭圆的离心率和焦点第二部分:椭圆的参数方程和一般方程2.1 参数方程和一般方程的含义2.2 椭圆的参数方程2.3 椭圆的一般方程第三部分:椭圆的焦点、直径和离心率3.1 椭圆的焦点特点3.2 椭圆的直径特点3.3 椭圆的离心率特点第四部分:椭圆的焦距和渐近线4.1 椭圆的焦距含义4.2 椭圆的渐近线含义4.3 椭圆的焦距和渐近线的性质第五部分:椭圆的面积和周长5.1 椭圆的面积公式5.2 椭圆的周长公式5.3 椭圆的面积和周长的计算方法第六部分:椭圆的相关定理和实例分析6.1 椭圆的凸性定理和实例分析6.2 椭圆的垂直切线定理和实例分析6.3 椭圆的切线与法线定理和实例分析结论部分:椭圆的应用和拓展7.1 椭圆在日常生活中的应用7.2 椭圆的拓展和推广第一部分:椭圆的基本性质1.1 椭圆的定义和参数椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为焦点,常数2a称为椭圆的主轴长度。
椭圆的主轴长度决定了椭圆的大小和形状。
椭圆的参数包括主轴长度a、次轴长度b、焦距2c、离心率e等。
其中焦距2c和主轴长度a之间有关系:c^2 = a^2 - b^2。
离心率e的计算公式为:e = c/a。
主轴长度a和次轴长度b决定了椭圆的形状,焦距2c和离心率e描述了椭圆与焦点之间的距离关系。
1.2 椭圆的性质椭圆具有许多特殊的性质,如平行轴定理、离心角定理、矩形椭圆定理等。
椭圆标准方程及其性质(一)椭圆的定义及椭圆的标准方程:椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率①(01)ce e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三: 椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。
4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。
椭圆的标准⽅程及⼏何性质椭圆的标准⽅程与⼏何性质⼀、知识梳理1、椭圆定义:平⾯内与两个定点21,F F 的距离之和等于常数(⼤于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
思考:若与两个定点21,F F 的距离之和等于常数(⼩于或等于||21F F )的点的轨迹⼜是如何?2.标准⽅程:(1)焦点在x 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+b y a x ;(2)焦点在y 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+bx a y .3、重要关系: 222a b c =+。
(注意⼤⼩关系) 4、椭圆的⼏何性质由椭圆⽅程12222=+by a x (0>>b a ) 研究椭圆的性质。
(1)范围:a x a ≤≤-,b y b ≤≤-(椭圆落在b y a x ±=±=,组成的矩形中)(2)对称性:图形关于原点对称.原点叫椭圆的对称中⼼,简称中⼼.x 轴、y 轴叫椭圆的对称轴.长轴与短轴长分别为b a 2,2。
b a ,分别为椭圆的长半轴长和短半轴长。
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点。
椭圆共有四个顶点: )0,(),0,(21a A a A -,),0(),,0(21b B b B -。
【⼩秘书】(1)求椭圆⽅程的⽅法:除了定义外,常⽤待定系数法;(2)当椭圆的焦点位置不确定时,可设⽅程为221x y m n+=(,0m n >),避免讨论和繁杂的计算。
(3)要重视椭圆定义解题的重要作⽤,要注意归纳提炼,优化解题过程。
【例1】求满⾜下列各条件的椭圆的标准⽅程.:(1)焦点在坐标轴上,且经过两点)31(3)以短轴的⼀个端点和两焦点为顶点的三⾓形为正三⾓形,且焦点到椭圆的最短练兵场:1. 椭圆5x 2+ky 2=5的⼀个焦点是(0,2),那么k 等于() (A)-1 (B)1 (C)5(D) -52、(08上海⽂)设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于()(A)4 (B)5 (C)8 (D) 103.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .4.椭圆的中⼼在原点,对称轴为坐标轴,椭圆的⼀个顶点B 与两焦点F 1F 组成三⾓形的周长为4+23,且∠F 1BF 2= 23π,求该椭圆⽅程。
高中数学椭圆知识点总结及公式大全椭圆是几何学中的重要概念,它的知识点包括定义、标准方程、性质等。
以下是椭圆知识点总结及公式大全:一、椭圆的基本概念1. 椭圆的概念:平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点之间的距离叫做椭圆的焦距。
2. 椭圆的标准方程:焦点在x轴上时,标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 $a > b > 0$ )焦点在y轴上时,标准方程为:$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (其中 $a > b > 0$ )二、椭圆的性质1. 范围:椭圆上的任意一点P,它到椭圆两个焦点的距离之和为定值,等于椭圆的长轴的长度。
2. 对称性:椭圆是关于其长轴和短轴对称的。
3. 顶点:椭圆与长轴和短轴的交点称为顶点。
长轴的顶点是$(-a,0),(a,0)$,短轴的顶点是$(0,-b),(0,b)$。
4. 焦点:椭圆的两个焦点位于长轴上,焦距为$2c$,其中$c^2 = a^2 - b^2$。
5. 离心率:椭圆的离心率定义为$e = \frac{c}{a}$,离心率是描述椭圆扁平程度的一个重要指标。
三、椭圆的参数方程椭圆的参数方程可以用角度θ表示,其中x=a×cosθ,y=b×sinθ。
参数方程可以帮助我们更方便地表达椭圆的轨迹。
以上就是关于高中数学中椭圆的全部知识点总结和相关公式,供你参考,建议咨询数学老师或者查看高中数学教辅以获取更准确全面的信息。
椭圆知识点性质大全1.122PF PF a +=2.标准方程22221x y a b += 3.111PF e d =<4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM ABb k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+.15.若PQ 是椭圆22221x y a b+=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2) L =. 17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M2222002222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=-⋅-. 19.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PF S b γ∆=,2(tan )2b Pc γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+.29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m ≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxay α=-,当0y =时, 90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20max()2a lx c e=-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =. 32.椭圆22221x y a b +=与直线0A x B yC ++=有公共点的充要条件是22222A a B b C +≥.33.椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||PA P A b ⋅=.36.已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+.37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b+=+. 39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx=的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PBb a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±). 45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A 到椭圆两焦点的距离,ab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知椭圆22221x y a b +=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<. 50.设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a m b n a --∠=⇔=++. 52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b +=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且sin eα≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =时取等号). 55.已知椭圆22221x y a b +=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b +=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=.60.过椭圆22221x y a b +=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a+≤+≤+.61.到椭圆22221x y a b+=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a bx y e e±+=.63.到椭圆22221x y a b+=( a >b >0)的两准线和x 轴的交点的距离之比为a c b -(c为半焦距)的动点的轨迹是姊妹圆22222()()a b x y e e ±+=(e 为离心率). 64.已知P 是椭圆22221x y a b +=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b+=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM AM b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b -+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠.69.(,)P m n 是椭圆2222()1x a y a b -+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠). 70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b +=≠. 72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min2()(||||)a b a y b x PA PB a-+⋅=. 73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两11 交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b+=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及b y x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:b l y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a+=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a=-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122ab S S +=. 92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,已知122ab S S +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.。
椭圆知识点笔记一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用集合语言表示为:$P =\{ M ||MF_1| +|MF_2| = 2a,2a >|F_1F_2| \}$,其中$|F_1F_2| = 2c$。
当$2a = 2c$时,动点的轨迹是线段$F_1F_2$;当$2a < 2c$时,动点无轨迹。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$表示椭圆的长半轴长,$b$表示椭圆的短半轴长,$c$满足$c^2 = a^2 b^2$,焦点坐标为$F_1(c, 0)$,$F_2(c, 0)$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$F_1(0, c)$,$F_2(0, c)$。
三、椭圆的几何性质1、范围对于焦点在$x$轴上的椭圆$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$,有$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$,有$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆,顶点坐标为$A_1(a, 0)$,$A_2(a, 0)$,$B_1(0, b)$,$B_2(0, b)$;焦点在$y$轴上的椭圆,顶点坐标为$A_1(0, a)$,$A_2(0, a)$,$B_1(b, 0)$,$B_2(b, 0)$。
【专题七】椭圆标准方程及其性质知识点大全
(一)椭圆的定义及椭圆的标准方程:
●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数
)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦
点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121
F F PF PF =+,则动点P 的轨迹为线段21F F ;
②若)(2121
F F PF PF <+,则动点P 的轨迹无图形
(二)椭圆的简单几何性:
●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程
122
22=+b y a x )0(>>b a 12
2
22=+b x a y )0(>>b a 图形
性质
焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围
a x ≤,
b y ≤
b x ≤,a y ≤
对称性 关于x 轴、y 轴和原点对称
顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±
轴长
长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2
离心率
①(01)c e e a =
<< ,②21()b e a
=-③2
22b a c -=
(离心率越大,椭圆越扁)
1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中
a 最大且a 2=
b 2+
c 2.
2.方程22
Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠
B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan
2
PF F S b θ
∆=如图:
●椭圆标准方程为:122
22=+b
y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,
12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan
2
PF F S b θ
∆=。
(四)通径 :如图:通径长 2
2b MN a
=
●椭圆标准方程:122
22=+b
y a x )0(>>b a ,
(五)点与椭圆的位置关系:
(1)点00(,)P x y 在椭圆外⇔22
00
221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;
(3)点00(,)P x y 在椭圆内⇔2200
221x y a b
+<
(六)直线与椭圆的位置关系:
●设直线l 的方程为:Ax+By+C=0,椭圆122
22=+b
y a x (a ﹥b ﹥0),联立组成方程
组,消去y(或x)利用判别式△的符号来确定:
(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切;
M N
F x
y
(3)相离:0∆<⇔直线与椭圆相离; (七)弦长公式:
●若直线AB:y kx b =+与椭圆标准方程:122
22=+b y a x )0(>>b a 相交于两点11(,)A x y 、
22(,)B x y ,
把AB 所在直线方程y=kx+b ,代入椭圆方程122
22=+b
y a x 整理得:Ax 2+Bx+C=0。
●弦长公式: ①212212
212
4)(11x x x x k
x x k AB -++=-+=a
k ∆
+=2
1(含x 的方程) ②212
2122124)(1111y y y y k y y k AB -++=-+
=
(含y 的方程) (八)圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
()()()()()()()
()()22
2222
22
12
1222
1122221200012
01122121212122
2
2
122
12
1 1 0
,,1(0)2
212AB x y a b
x y a b y y x x x y A x y B x y a b a b
x x x AB x y AB y y y x x x x y y y y a b x x b a
y y +=+=+
=--+=>>+⎧=⎪⎪⎨
+⎪=⎪⎩⎧⎪⎪⎨⎪⎪⎩+-+-+=-+设是椭圆上不重合的两点,
则,两式相减得所以,直线的斜率k ,M ,是线段的中点坐标,()AB 1式可以解决与椭圆弦的斜率及中点有关的问题,此法称为点差法(设而不求)
① 椭圆标准方程:122
22=+b y a x )0(>>b a ,以00(,)M x y 为中点的弦所在直线的斜率
2
2OM b k k a
=-;
② 椭圆标准方程:122
22=+b x a y )0(>>b a ,以00(,)M x y 为中点的弦所在直线的斜率
2
2OM a k k b
=-
③斜率为k的弦的中点轨迹方程:设弦PQ的端点为P(x1,y1),Q(x2,y2),中点为M(x0,
y0),把P,Q的坐标代入椭圆方程后作差相减用中点公式和斜率公式可得
2
2
=
+
b
ky
a
x
(椭
圆内不含端点的线段)。
【考点指要】
在历年的高考数学试题中,有关圆锥曲线的试题所占的比重约占试卷的15%左右,且题型,数量,难度保持相对稳定:选择题和填空题共2道题,解答题1道,选择题和填空题主要考查圆锥曲线的标准方程,几何性质等;解答题往往是以椭圆,双曲线或抛物线为载体的有一定难度的综合题,问题涉及函数,方程,不等式,三角函数,平面向量等诸多方面的知识,并蕴含着数学结合,等价转化,分类讨论等数学思想方法,对考生的数学学科能力及思维能力的考查要求较高。
主要考查:圆锥曲线的概念和性质;直线与圆锥曲线的位置关系;求曲线的方程;与圆锥曲线有关的定值问题,最值问题,对称问题,范围问题等。
曲线的应用问题,探索问题以及圆锥曲线与其它数学内容的交汇问题也将是高考命题的热点。