数据仓库与数据挖掘技术 第二章 数据仓库
- 格式:doc
- 大小:2.07 MB
- 文档页数:20
数据仓库与数据挖掘技术在企业决策支持系统中的应用第一章:引言随着信息时代的到来,企业面临着海量数据的挑战以及信息的快速发展。
为了更好地利用数据为企业决策提供支持,数据仓库和数据挖掘技术应运而生。
本文将就数据仓库和数据挖掘技术在企业决策支持系统中的应用进行探讨。
第二章:数据仓库的概念和特点2.1 数据仓库的定义和目标数据仓库是指一个用于存储和管理企业数据的集中化数据系统。
它将多个异构数据源中的数据进行集成和转换,并提供给决策者进行分析和查询。
数据仓库的目标是帮助企业更好地理解业务过程和市场情况,从而支持企业决策的制定。
2.2 数据仓库的特点数据仓库具有以下特点:(1) 面向主题:数据仓库以企业的业务主题为核心,将数据按照不同主题进行分类和组织,方便决策者进行查询和分析。
(2) 集成的:数据仓库可以将来自多个数据源的数据进行集成和转换,提供给决策者一个一致的数据视图。
(3) 非易失的:数据仓库一旦存储了数据,就会成为企业不可或缺的资产,不会因为临时的故障而导致数据的丢失。
第三章:数据仓库的架构和设计原则3.1 数据仓库的架构数据仓库通常采用三层架构,包括源数据层、数据存储层和应用层。
源数据层用于采集和清洗原始数据,数据存储层用于存储和管理数据,应用层用于查询和分析数据,并将结果展示给决策者。
3.2 数据仓库的设计原则数据仓库的设计应遵循以下原则:(1) 数据模型的设计:数据仓库的数据模型应以企业的业务需求为导向,充分体现业务过程和相关指标。
(2) 数据集成和转换:数据仓库需要对不同数据源的数据进行集成和转换,确保数据的一致性和准确性。
(3) 数据的存储和管理:数据仓库需要选择合适的存储结构和数据管理技术,提高数据的检索效率和可靠性。
第四章:数据挖掘技术的概念和方法4.1 数据挖掘的定义和目标数据挖掘是指从大量的数据中发现隐藏的规律和模式,并将其应用于决策支持和业务优化。
数据挖掘的目标是帮助企业提高决策的准确性和效率,增强企业竞争力。
数据仓库与数据挖掘技术解析在现代信息化的时代,数据已经成为了一种非常重要的资产。
在这些海量的数据之中,有很多有价值的信息被隐藏其间。
这就需要我们使用数据仓库与数据挖掘技术,通过对数据的分析和挖掘,向我们呈现出内在有价值的数据信息,帮助我们更好地理解数据,并从中发现我们需要的信息。
一、什么是数据仓库?在这个信息时代,数据已经成为企业不可缺少的一部分。
数据仓库是一个专门用于存储数据的系统。
它是一个集成的数据存储库,可以提供数据分析、数据挖掘、Web 搜索和企业报告等功能,以帮助企业快速响应客户需求、创造商业价值。
数据仓库是一个面向主题、集成、时间相对稳定和可刷新的数据存储库,用于支持企业智能化决策的整个过程。
面向主题: 数据仓库是围绕企业内关键业务件建立的,如销售、供应、市场等;集成: 数据仓库可集成不同来源的数据;时间相对稳定: 数据仓库存储的数据相对长周期,如一年或更长;可刷新: 数据仓库是可刷新的,数据可以通过批处理或实时方式更新。
二、数据仓库的重要性数据仓库非常重要,因为它提供了企业知识管理的基础。
企业知识管理是智能化决策和企业的长期成功的基础。
数据仓库可以帮助企业了解他们的客户、业务和市场动态。
由于大量的数据每天产生,数据仓库是必要的,以便企业能够应对不断变化的市场需求和管理信息的日益复杂的挑战。
数据仓库的另一个重要方面是它可以帮助企业洞察和理解他们的客户。
通过数据仓库分析数据可以确定客户的购买模式、使用历史和趋势,以及他们对于企业的反应。
这有助于企业制定更好的战略、优化点,以更好地满足客户需求。
三、数据挖掘技术数据挖掘是一种从大量数据中提取信息、关系和模式的技术。
数据挖掘不是单纯的筛选和过滤数据,而是在数据中寻找隐含的知识和模式。
如同羊毛出在羊身上,这些我们不曾发现过的、规律性强的数据关联,本身就是数据中蕴藏的财富。
数据挖掘使用抽样、统计分析、模型构建等技术,将庞大、复杂的数据库处理成有价值的信息,一方面为业务提供帮助,一方面成为指导企业决策的可靠的数据来源。
数据仓库与数据挖掘教案教案:数据仓库与数据挖掘一、教学目标1. 理解数据仓库和数据挖掘的基本概念和作用;2. 掌握数据仓库的设计原则和构建过程;3. 了解数据挖掘的常见技术和应用领域;4. 能够利用数据仓库和数据挖掘技术进行数据分析和决策支持。
二、教学内容1. 数据仓库的概念和特点;2. 数据仓库的设计原则和构建过程;3. 数据挖掘的基本任务和流程;4. 数据挖掘的常见技术和应用案例;5. 数据仓库与数据挖掘在决策支持中的应用。
三、教学过程第一节:数据仓库的概念和特点(30分钟)1. 数据仓库的定义和作用;2. 数据仓库与传统数据库的区别;3. 数据仓库的特点和优势。
第二节:数据仓库的设计原则和构建过程(60分钟)1. 数据仓库的设计原则:一致性、稳定性、易用性等;2. 数据仓库的构建过程:需求分析、数据抽取、数据转换、数据加载等;3. 数据仓库的体系结构和组成要素。
第三节:数据挖掘的基本任务和流程(40分钟)1. 数据挖掘的概念和作用;2. 数据挖掘的基本任务:预测建模、分类、聚类、关联规则挖掘等;3. 数据挖掘的流程:数据清洗、特征选择、模型训练和评估等。
第四节:数据挖掘的常见技术和应用案例(60分钟)1. 数据挖掘的常见技术:决策树、神经网络、聚类分析、关联规则挖掘等;2. 数据挖掘在商业领域的应用案例:市场篮子分析、客户细分、欺诈检测等。
第五节:数据仓库与数据挖掘在决策支持中的应用(30分钟)1. 数据仓库与决策支持系统的关系;2. 数据仓库和数据挖掘在决策支持中的应用实例。
1. 讲授相结合的方式,通过概念讲解和实例分析,深入浅出地介绍数据仓库与数据挖掘的相关知识;2. 基于案例的学习,引导学生运用数据仓库和数据挖掘的技术进行实际问题的分析解决;3. 学生小组讨论和展示,促进学生的互动和合作。
五、教学评价1. 课堂参与度(10%):学生积极回答问题和提出自己的见解;2. 课堂练习与作业(30%):课堂练习和作业涵盖概念理解和应用实践;3. 课程设计项目(40%):小组合作设计一个数据仓库与数据挖掘的实际项目,包括需求分析、数据抽取、模型建立和结果评估等环节;4. 个人报告(20%):学生针对设计项目进行个人报告,展示理解和技术应用能力。
数据仓库与数据挖掘区别随着数据的日益增长和应用需求的扩大,数据仓库和数据挖掘成为了越来越重要的领域。
这两个领域虽然有时被混淆在一起,但其实有很大的区别。
本文将深入探讨数据仓库和数据挖掘的区别。
一、数据仓库是什么首先我们来看数据仓库是什么。
数据仓库是一个专门存储企业级数据的系统。
它是一个集中管理和众多决策支持工具的数据中心,可以提供企业数据的历史标准记录和解决方案。
数据仓库包括一个或多个数据源、抽取转换加载程序、集成部分和元数据信息。
在数据仓库中,业务数据从各个操作性/事务型系统收集、清洗、集成并存储,为后期的分析使用提供了数据资源。
数据仓库通常能够支持复杂、高级、决策性的业务分析,而传统的操作数据系统通常只支持简单的查询和记录事务。
二、数据挖掘是什么接下来我们了解一下数据挖掘。
数据挖掘是一种从数据中发掘隐藏模式、关系和规律的过程,可以通过应用统计分析、机器学习、聚类分析以及其它相关技术进行自动化发现。
数据挖掘是在海量、复杂、异构、不确定的数据中获取有用知识的一种方法。
数据挖掘与统计学不同之处在于,统计学更加关注于数据分布、统计量以及推断。
而数据挖掘更加关心的是数据的预测建模、分类和聚类。
数据挖掘还可以探索数据,从而寻找实现业务目标的方案。
在数据挖掘中,数据不仅用于构建模型,还广泛应用于商业分析、客户关系管理、市场探测以及其它领域。
三、数据仓库和数据挖掘的区别数据仓库和数据挖掘经常被误解,认为是相同的领域。
然而,两者之间有很大的区别。
首先,数据仓库旨在存储和管理各种类型的数据。
而数据挖掘旨在从这些数据源中提取有用、有影响的业务信息。
因此,可以说数据仓库是数据挖掘的基础。
其次,数据仓库主要是为数据分析提供数据,而数据挖掘旨在构建更深入的分析和预测模型。
数据仓库会使业务分析师获得简单易懂的答案,而数据挖掘技术能发现隐藏的模式和规律,发掘数据中的未知信息。
另外,数据仓库主要是为企业的管理团队和商业分析师提供数据资源。
第一章数据仓库与数据挖掘概述1.数据库与数据仓库的本质差别是什么?答:数据库用于事务处理,数据仓库用于决策分析;数据库保持事务处理的当前状态,数据仓库既保存过去的数据又保存当前的数据;数据仓库的数据是大量数据库的集成;对数据库的操作比较明确,操作数据量少,对数据仓库操作不明确,操作数据量大。
数据库是细节的、在存取时准确的、可更新的、一次操作数据量小、面向应用且支持管理;数据仓库是综合或提炼的、代表过去的数据、不更新、一次操作数据量大、面向分析且支持决策。
6.说明OLTP与OLAP的主要区别。
答:OLTP针对的是细节性数据、当前数据、经常更新、一次性处理的数据量小、对响应时间要求高且面向应用,事务驱动; OLAP针对的是综合性数据、历史数据、不更新,但周期性刷新、一次处理的数据量大、响应时间合理且面向分析,分析驱动。
8.元数据的定义是什么?答:元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。
9.元数据与数据字典的关系什么?答:在数据仓库中引入了“元数据”的概念,它不仅仅是数据仓库的字典,而且还是数据仓库本身信息的数据。
18.说明统计学与数据挖掘的不同。
答:统计学主要是对数量数据(数值)或连续值数据(如年龄、工资等),进行数值计算(如初等运算)的定量分析,得到数量信息。
数据挖掘主要对离散数据(如职称、病症等)进行定性分析(覆盖、归纳等),得到规则知识。
19.说明数据仓库与数据挖掘的区别与联系。
答:数据仓库是一种存储技术,它能适应于不同用户对不同决策需要提供所需的数据和信;数据挖掘研究各种方法和技术,从大量的数据中挖掘出有用的信息和知识。
数据仓库与数据挖掘都是决策支持新技术。
但它们有着完全不同的辅助决策方式。
在数据仓库系统的前端的分析工具中,数据挖掘是其中重要工具之一。
它可以帮助决策用户挖掘数据仓库的数据中隐含的规律性。
数据仓库和数据挖掘的结合对支持决策会起更大的作用。
西北师范大学计算机科学与技术专业课程教学大纲数据挖掘一、说明(一)课程性质数据挖掘是计算机科学与技术专业的选修课程,本课程以数据挖掘为主要内容,讲述实现数据挖掘的各主要功能、挖掘算法和应用,并通过对实际数据的分析更加深入地理解常用的数据挖掘模型。
先修课程:《数据库原理》、《概率论与数理统计》、《高级程序设计语言》、《数据结构》等。
(二)教学目的数据挖掘是20世纪末刚刚兴起的数据智能分析技术,由于有广阔的应用前景而备受重视。
数据挖掘作为一门新兴的学科,在它的形成和发展过程中表现出了强大的生命力,广大从事数据库应用与决策支持,以及数据分析等学科的科研工作者和工程技术人员迫切需要了解和掌握它。
数据挖掘涉及的内容较为广泛,已成为迅速发展并在信息社会中广泛应用的一门综合性学科。
数据挖掘已成为统计学专业的一门重要课程。
通过数据挖掘课程的教学,使学生理解数据挖掘的基本概念和方法,为进入更深入的智能数据分析研究打好基础。
(三)教学内容本课程主要学习的内容包括数据预处理、分类与预测、聚类分析等内容(四)教学时数本课程的教学时数为课堂36学时,上机18学时,2.5学分。
(五)教学方式本课程将采用课堂讲授、上机实验相结合的方法。
二、本文第一章数据挖掘概述教学要点:1.理解和掌握数据挖掘的基本概念、数据挖掘过程以及数据挖掘功能。
2.了解数据挖掘的应用和面临的问题。
3.对数据挖掘能够解决的问题和解决问题思路有清晰的认识。
教学时数:3学时。
教学内容:第一节什么是数据挖掘(0.5学时)数据挖掘(Data Mining)就是从大量的、不完全的、模糊的、随机的实际应用数据中,提取隐含在其中的、事先不知道的但又是潜在有用的信息和知识的过程。
第二节数据挖掘——在何种数据上进行?(0.5学时)关系数据库、数据仓库、事务数据库第三节数据挖掘功能——可以挖掘什么类型的模式(1学时)关联分析、分类和预测、聚类分析第四节数据挖掘系统的分类(1学时)数据挖掘系统可以根据所挖掘的知识类型分类。
第一章数据仓库与数据挖掘概述无习题第二章数据仓库概述一.判断题在分析型处理产生后,数据处理的环境由原来的以单一数据库为中心的数据环境发展为以数据仓库为基础的体系化环境。
在事务型(操作型)数据处理下,数据处理的环境主要是以单一数据库为中心的数据环境。
数据仓库是为构建分析型数据处理环境而出现的一种数据存储和组织技术.面向应用,是数据仓库区别于传统的操作型数据库的关键特征。
一个数据仓库是通过集成多个异种数据源来构造的。
由于在数据仓库中只进行数据的初始装载和查询操作,所以,数据一旦进入数据仓库,就是稳定的,基本上不会被更新。
数据立方体必须是3维的。
在数据仓库中,概念分层定义了一个映射序列,可以将低层概念映射到更一般的高层概念。
方体的格,是在单个维上定义的映射序列,可以将低层概念映射到更一般的高层概念。
雪花模型通过在每个维表基础上,增加附加维表的方式来降低星型模型中可能会存在的冗余现象。
在事实星座模型中,有且仅能有一个事实表。
在数据仓库的设计过程中,要坚持“数据驱动和需求驱动双驱动,且以需求驱动为中心”的原则。
二.单选题在以下人员中,被誉为“数据仓库之父”的是:()(知识点:数据仓库的基本概念;易)A. H.Inmon B. E.F.Codd C. Simon D. Pawlak以下关于数据仓库的说法正确的是:()(知识点:数据仓库的基本概念;难)A. 数据仓库中的数据只能来源于组织内部的操作型数据库B. 数据仓库是为应对事务型数据处理的需要而产生的C. 数据仓库是面向主题的,这是其区别于操作型数据库的关键特征D. 数据仓库必须是面向企业全局的,不能以部门为单位建立数据仓库以下哪项不是“信息包图”中的元素?()(知识点:数据仓库的三级模型;难)A. 维度B. 维的概念层次及相应层次上的数量C. 度量D. 方体的格以下哪项不属于数据仓库的逻辑模型?()(知识点:数据仓库的三级模型;中)A. 星型模型B. 雪花模型C. 度量模型D. 事实星座模型在数据仓库的设计过程中,下列描述正确的是()(知识点:数据仓库的设计;难)A. 数据仓库是“数据驱动+需求驱动”双驱动,但必须以需求驱动为中心B. 数据仓库主要面向分析型处理环境,在设计时很难完全明确用户的需求C. 数据仓库与数据库一样,其数据主要来自于企业的业务流程D. 数据仓库的设计目标是要提高事务处理的性能下面哪项关于星型模型的说法是不正确的:()(知识点:数据仓库的三级模型;难)A. 有一个事实表,且事实表中的属性由指向各个维表的外键和一些相应的度量数据组成B. 有一组小的附属表,称为维表,且每维一个维表C. 事实表的每个字段都是事实度量字段D. 由于每维只能建立一个维表,使得维表中有些信息会产生冗余在数据仓库的概念模型中,通过()来实现数据从客观世界到主观认识的映射。
第一章作业1.数据库与数据仓库的本质差别是什么?书P2(1)数据库用于事务处理,数据仓库用于决策分析。
(2)数据库保持事物处理的当前状态,数据仓库即保存过去的数据又保存当前的数据。
(3)数据仓库的数据是大量数据库的集成。
(4)对数据库的操作比较明确,操作数量较小。
对数据仓库操作不明确,操作数据量大。
2.从数据库发展到数据仓库的原因是什么?书P1(1)数据库数据太多,信息贫乏。
如何将大量的数据转化为辅助决策信息成为了研究热点。
(2)异构环境数据的转换和共享。
随着各类数据库产品的增加,异构环境的数据也逐渐增加,如何实现这些异构环境数据的转换的共享也成了研究热点。
(3)利用数据进行事物处理转变为利用数据支持决策。
3.举例说明数据库与数据仓库的不同。
比如,银行中储蓄业务要建立储蓄数据库,信用卡要建立信用卡数据库,贷款业务要建立贷款数据库,这些数据库方便了银行的事务处理。
但是要对这些独立数据库进行决策分析就很复杂了。
因此可以把这些数据库中的数据存储转化到数据仓库中,方便进行决策。
4.OLTP(On Line Transaction Processing,联机事物处理)是在网络环境下的事务处理工作,以快速的响应和频繁的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。
OLAP(On Line Analytical Processing,联机分析处理)是使用多维数据库和多维分析的方法,对多个关系数据库共同进行大量的综合计算来得到结果的方法。
5.OLTP是用户的数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。
6.OLTP OLAP细节性数据综合性数据当前数据历史数据经常更新不更新,但周期性刷新一次性处理的数据量小一次处理的数据量大对响应时间要求高响应时间合理面向应用,事务驱动面向分析,分析驱动7.包括数据项、数据结构、数据流、数据存储和处理过程五个部分。
8.定义为关于数据的数据,描述数据仓库中数据及其环境的数据。
第2章数据仓库2.1数据仓库的基本概念
1. 数据仓库的数据是面向主题的
数据仓库与数据挖掘技术
图2-1主题间的重叠关系
2. 数据仓库的数据是集成的
3. 数据仓库的数据是不可更新的
数据仓库与数据挖掘技术4. 数据仓库的数据是随时间不断变化的
图2-2数据仓库体系结构2.2数据仓库的体系结构
数据仓库与数据挖掘技术
图2-3数据仓库数据组织结构2.2.1元数据
1. 元数据在数据仓库中的作用
2. 元数据的使用
3. 元数据的分类
4. 元数据的内容
2.2.2粒度的概念
1. 按时间段综合数据的粒度
2. 样本数据库
2.2.3分割问题
1. 分割的优越性
2. 数据分割的标准
3. 分割的层次
2.2.4数据仓库中的数据组织形式
1. 简单堆积结构
图2-4简单堆积结构数据组织形式2. 轮转综合结构
数据仓库与数据挖掘技术
图2-5轮转综合结构数据组织形式3. 简单直接结构
图2-6简单直接结构数据组织形式4. 连续结构
图2-7连续结构数据组织形式
数据仓库与数据挖掘技术
2.3数据仓库的数据模型
2.3.1概念数据模型
图2-8商品、顾客和供应商E-R图
2.3.2逻辑数据模型
2.3.3物理数据模型
2.3.4高层数据模型、中间层数据模型和低层数据模型
1. 高层数据模型
2. 中间层数据模型
3. 低层数据模型
数据仓库与数据挖掘技术2.4数据仓库设计步骤
图2-9数据仓库设计步骤2.4.1概念模型设计
1. 界定系统边界
2. 确定主要的主题域
3. 实例
2.4.2技术准备工作
2.4.3逻辑模型设计
1. 分析主题域
2. 划分粒度层次
3. 确定数据分割策略
4. 定义关系模式
5. 定义记录系统
2.4.4物理模型设计
1. 确定数据的存储结构
数据仓库与数据挖掘技术
2. 确定索引策略
3. 确定数据存放位置
4. 确定存储分配
2.4.5数据仓库的生成
1. 接口设计
2. 数据装入
2.4.6数据仓库的使用和维护
1. 开发DSS应用
图2-10DSS应用开发步骤
2. 进一步理解需求,改善系统,维护数据仓库
图2-11William H.Inmon数据仓库设计步骤
数据仓库与数据挖掘技术
2.5利用SQL Server 2005构建数据仓库
图2-12使用Visual Studio 2005系统新建项目
图2-13新建Analysis Services项目
图2-14新建数据源
数据仓库与数据挖掘技术
图2-15新建数据源向导
图2-16选择如何连接数据源
图2-17连接管理器
图2-18连接管理器连接测试成功窗口
图2-19选择已经连接的数据库作为数据源
图2-20选择连接数据源的凭证
图2-21新建数据源向导完成
图2-22右击新建数据源视图
图2-23新建数据源视图向导
图2-24选择视图的数据源
图2-25选择表和视图
图2-26完成新建数据源视图向导
图2-27新建多维数据集
图2-28多维数据集向导
图2-29选择生成多维数据集的方法
图2-30选择多维数据集的数据源视图
图2-31检测事实数据表和维度表
图2-32标示事实表和维度表
图2-33选择度量值
图2-34扫描维度
图2-35查看维度结构
图2-36完成多维数据集向导
图2-37创建完成数据仓库界面
习题2
1. 如何理解数据仓库是面向主题的、集成的、不可更改的和是随时间不断变化的。
2. 什么叫元数据?起什么作用?
3. 如何理解数据仓库中的粒度的概念?如何确定数据仓库的粒度?数据量与粒度有什么关系?
4. 为什么要进行数据仓库的清理?如何清理?
5. 数据仓库设计有哪3级数据模型?各如何设计?
6. 采用什么方法可以提高数据仓库的性能?
7. 叙述数据仓库设计的具体步骤,如何实现?
8. 什么是数据仓库的直接访问,什么是数据仓库的间接访问?两者有何不同?
9. 数据仓库有哪些应用领域?各举例说明。