2013-2014学年第一学期八年级数学期末模拟题
- 格式:doc
- 大小:133.00 KB
- 文档页数:4
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2022-2023学年八年级数学第一学期期末模拟试题一、选择题(本部分共10小题,每小题3分,共30分)1.下列各数中,是无理数的是()A.3.B.πC.D.2.以下列各组数的长度围成的三角形中,不是直角三角形的一组是()A.6,8,11B.5,12,13C.1,,2D.3,4,53.在平面直角坐标系中,点A的坐标是(﹣2,1),点B与点A关于y轴对称,则点B的坐标是()A.(1,﹣2)B.(2,﹣1)C.(2,1)D.(﹣1,﹣2)4.下列二次根式中,最简二次根式是()A.B.C.D.5.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A.甲.B.乙C.丙D.丁6.如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E,若∠A=20°,则∠CED等于()A.20°B.50°C.70°D.110°7.下列命题:①两点之间,直线最短;②角是轴对称图形,对称轴是它的角平分线;③同旁内角互补,两直线平行;④的平方根是±9,其中真命题的个数是()A.1个B.2个C.3个D.4个8.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是()A.B.C.D.9.某学校体育场的环形跑道长250m,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s相遇一次.如果同向而行,那么每隔50s乙就追上甲一次,设甲的速度为xm/s,乙的速度为ym/s,则可列方程组为()A.B.C.D.10.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5二、填空题(本部分共5小题,每小题3分,共15分)11.8的立方根是.12.将直线y=3x向上平移3个单位,得到直线.13.将一把直尺与含30°的直角三角板如图摆放,使三角板的一个锐角顶点落在直尺的一边上,若∠1=40°,则∠2=80°.14.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是.15.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,点P 是线段AB的三等分点(AP>BP),点C是x轴上的一个动点,连接BC,以BC为直角边,点B为直角顶点作等腰直角△BCD,连接DP.则DP长度的最小值是.三、解答题(第16题6分,第17题6分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(8分)计算:(1)+.(2)﹣2×+|1﹣|.17.(6分)解方程组:.18.在深圳市开展的“美丽鹏城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)人数占整体的百分比0.51212%13030%1.5x40%218y合计m100%(1)统计表中的x=40,y=0.18;(2)被调查同学劳动时间的中位数是 1.5时;(3)请将条形统计图补充完整;(4)求所有被调查同学的平均劳动时间.(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?19.甲、乙两车从A地出发前往B地.两车离开A地的距离y(km)与时间x(h)的关系如图所示.(1)A、B两地之间的距离为km,乙车的平均速度是km/h;(2)求图中a的值;(3)求甲车出发多长时间,两车相距20km.20.天虹商场购进A、B两种运动服进行销售,若购进A运动服3件,B运动服2件,共花费340元;若购进A运动服2件,B运动服3件,共花费360元.销售时,两种运动服都是在进价基础上提高40元/件进行标价,再打八折销售.(1)求A、B两种运动服每件的进价分别是多少元?(2)若实际购进两种运动服共100件,其中A运动服a件,全部售完后获利w元,请求出w与a之间的函数关系式.21.点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD∥EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B﹣∠DNG=∠EDN,则∠B的度数为.22.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A(a,3),直线交l2交y轴于点B(0,﹣5)(1)求直线l2的解析式;(2)将△OAB沿直线l2翻折得到△CAB(其中点O的对应点为点C),求证AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.2022-2023学年八年级数学第一学期期末模拟试题一、选择题(本部分共10小题,每小题3分,共30分)1.下列各数中,是无理数的是()A.3.B.πC.D.【解答】解:A选项,3.是无限循环小数,故该选项不符合题意;B选项,π是无限不循环小数,故该选项符合题意;C选项,是分数,属于有理数,故该选项不符合题意;D选项,=3,属于有理数,故该选项不符合题意;故选:B.2.以下列各组数的长度围成的三角形中,不是直角三角形的一组是()A.6,8,11B.5,12,13C.1,,2D.3,4,5【解答】解:A、62+82≠112,不符合勾股定理的逆定理,不是直角三角形,故符合题意;B、52+122=132,符合勾股定理的逆定理,是直角三角形,故不符合题意;C、12+()2=22,符合勾股定理的逆定理,是直角三角形,故不符合题意;D、32+42=52,符合勾股定理的逆定理,是直角三角形,故不符合题意;故选:A.3.在平面直角坐标系中,点A的坐标是(﹣2,1),点B与点A关于y轴对称,则点B的坐标是()A.(1,﹣2)B.(2,﹣1)C.(2,1)D.(﹣1,﹣2)【解答】解:∵点A与点B关于y轴对称,点A的坐标是(﹣2,1),∴点B的坐标是:(2,1).故选:C.4.下列二次根式中,最简二次根式是()A.B.C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式,不符合题意;B、=2,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;C、=|x|,被开方数中不含能开得尽方的因式,不是最简二次根式,不符合题意;D、,是最简二次根式,符合题意;故选:D.5.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A.甲.B.乙C.丙D.丁【解答】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.6.如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E,若∠A=20°,则∠CED等于()A.20°B.50°C.70°D.110°【解答】解:∵AC⊥CE,∴∠C=90°,∵∠A=20°,∴∠ABC=70°,∵AB∥DF,∴∠CED=∠ABC=70°.故选:C.7.下列命题:①两点之间,直线最短;②角是轴对称图形,对称轴是它的角平分线;③同旁内角互补,两直线平行;④的平方根是±9,其中真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①两点之间,线段最短,故原命题错误,是假命题,①不符合题意;②角是轴对称图形,对称轴是它的角平分线所在的直线,故原命题错误,是假命题,②不符合题意;③同旁内角互补,两直线平行,正确,是真命题,③符合题意;④的平方根是±3,故原命题错误,是假命题,④不符合题意,正确的有1个,故选:A.8.如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是()A.B.C.D.【解答】解:将(m,4)代入y=x+2得4=m+2,解得m=2,∴点P坐标为(2,4),∴方程组的解为:.故选:D.9.某学校体育场的环形跑道长250m,甲、乙分别以一定的速度练习长跑和骑自行车,同时同地出发,如果反向而行,那么他们每隔20s相遇一次.如果同向而行,那么每隔50s乙就追上甲一次,设甲的速度为xm/s,乙的速度为ym/s,则可列方程组为()A.B.C.D.【解答】解:∵如果反向而行,那么他们每隔20s相遇一次,∴20(x+y)=250;∵如果同向而行,那么每隔50s乙就追上甲一次,∴50(y﹣x)=250.∴所列方程组为.故选:A.10.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5【解答】解:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9﹣x)2+(9﹣3)2,解得x=2,即AM=2,故选:B.二、填空题(本部分共5小题,每小题3分,共15分)11.8的立方根是2.【解答】解:∵23=8,∴8的立方根为2,故答案为:2.12.将直线y=3x向上平移3个单位,得到直线y=3x+3.【解答】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.13.将一把直尺与含30°的直角三角板如图摆放,使三角板的一个锐角顶点落在直尺的一边上,若∠1=40°,则∠2=80°.【解答】解:如图,由题意得∠BAE=60°,BC∥AD,∴∠BAD=∠BAE+∠1=100°,∠2+∠BAD=180°,∴∠2=180°﹣∠BAD=80°.故答案为:80.14.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是y=48x+20.【解答】解:由题意可得:y=100+0.8×(60x﹣100)=100+48x﹣80=48x+20,故答案为:y=48x+20.15.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,点P 是线段AB的三等分点(AP>BP),点C是x轴上的一个动点,连接BC,以BC为直角边,点B为直角顶点作等腰直角△BCD,连接DP.则DP长度的最小值是.【解答】解:过点B作BM⊥y轴且BM=OB,连接DM,AD,∵直线y=﹣x+2与x轴交于点A,与y轴交于点B,令y=0,﹣x+2=0,x=2,令x=0,y=2,∴A点坐标为(2,0),B点坐标为(0,2),∴OA=OB=BM=2,∵BM⊥y轴,∴∠OBM=90°,∴M点坐标为(2,2),∵△BCD是等腰直角三角形,∴BC=BD,∠CBD=90',∴∠CBD=∠OBM=90,∴∠CBD﹣∠OBD=∠OBM﹣∠OBD,∴∠CBO=∠DBM,在△BOC和△BMD中,,∴△BOC≌△BMD(SAS),∴∠BOC=∠BMD=90°,∴BM⊥DM,∴DM∥OB,∴M,D,A三点横坐标相同都为2,∴M,D,A三点共线,∴四边形DAMB是正方形,∴∠BAM=45°,∵AB==2,点P是线段AB的三等分点(AP>BP),∴AP=AB=,当且仅当PD⊥AM时,线段DP的长度取得最小值,∴当DP的长度最小时,△ADP为等腰直角三角形,∴DP长度的最小值=AP=,故DP长度的最小值为.故答案为:.三、解答题(第16题6分,第17题6分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(8分)计算:(1)+.(2)﹣2×+|1﹣|.【解答】解:(1)+=+=+=+=0;(2)﹣2×+|1﹣|=﹣2﹣2×+﹣1=﹣2﹣+﹣1=﹣3.17.(6分)解方程组:.【解答】解:,①﹣②得:5y=﹣1,解得:y=﹣,把y=﹣代入①得:2x+=2,解得:x=,则方程组的解为.18.在深圳市开展的“美丽鹏城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)人数占整体的百分比0.51212%13030%1.5x40%218y合计m100%(1)统计表中的x=40,y=0.18;(2)被调查同学劳动时间的中位数是 1.5时;(3)请将条形统计图补充完整;(4)求所有被调查同学的平均劳动时间.(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?【解答】解:(1)被调查的同学的总人数为m=12÷0.12=100(人),∴x=100×0.4=40,y==0.18,故答案为:40,0.18;(2)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数是=1.5(小时);故答案为:1.5;(3)根据(1)补全统计图如下:(4)所有被调查同学的平均劳动时间是:=1.32(小时);(5)根据题意得:1500×18%=270(人),答:估计双休日在各自社区参加2小时义务劳动的学生有270人.19.甲、乙两车从A地出发前往B地.两车离开A地的距离y(km)与时间x(h)的关系如图所示.(1)A、B两地之间的距离为350km,乙车的平均速度是100km/h;(2)求图中a的值;(3)求甲车出发多长时间,两车相距20km.【解答】解:(1)由函数图象得:A、B两地之间的距离是350km,乙车的平均速度为:350÷(4.5﹣1)=100km/h;故答案为:350,100;(2)解:设甲的函数解析式为y=k1x,由题意得350=5k1,解得:k1=70,∴y=70x,设乙的函数解析式为y=k2x+b∴,解得:,∴y=100x﹣100,联立方程组,解得,∴a=;(3)由题意,①当乙还没出发时,70x=20,解得:;②当甲在乙前时:y甲﹣y乙=20即70x﹣(100x﹣100)=20,解得:;③当乙未到在甲前时:y乙﹣y甲=20,即(100x﹣100)﹣70x=20,解得:x=4,④当乙到达后时:350﹣y甲=20,解得:.答:甲出发h,h,4h,h时两车相距20km.20.天虹商场购进A、B两种运动服进行销售,若购进A运动服3件,B运动服2件,共花费340元;若购进A运动服2件,B运动服3件,共花费360元.销售时,两种运动服都是在进价基础上提高40元/件进行标价,再打八折销售.(1)求A、B两种运动服每件的进价分别是多少元?(2)若实际购进两种运动服共100件,其中A运动服a件,全部售完后获利w元,请求出w与a之间的函数关系式.【解答】解:(1)设A种运动服每件的进价是x元,B种运动服每件的进价是y元,根据题意,得:,解得:,答:A种运动服每件的进价是60元,B种运动服每件的进价是80元;(2)根据题意,得:w=[0.8×(60+40)﹣60]a+[0.8×(80+40)﹣80](100﹣a)=4a+1600.21.点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD∥EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B﹣∠DNG=∠EDN,则∠B的度数为60°.【解答】证明:(1)∵DG平分∠BDE,∴∠BDG=∠ADG.又∵∠BDG=∠BGD,∴∠ADG=∠DGB.∴AD∥BC.∴∠DEF=∠EFG.∵∠DBF=∠DEF,∴∠DBF=∠EFG.∴BD∥EF.(2)过点G作GH∥BD,交AD于点H,如图,∵BD∥EF,∴GH∥EF.∴∠BDG=∠DGH,∠GEF=∠HGE,∵∠DGE=∠DGH+∠HGE,∴∠DGE=∠BDG+∠FEG.(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α.∴∠PDM=180°﹣α.∵DN平分∠PDM,∴.∴∠EDN=∠PDN−∠PDE=90°﹣﹣(180°﹣4α)=﹣90°.∴∠GDN=∠MDN﹣∠MDG=90°﹣﹣α=90°﹣.∵DG⊥ON,∴∠DNG=90°.∴∠DNG=90°−(90°−)=.∵DE∥BF,∴∠B=∠PDE=180°﹣4α.∵∠B﹣∠DNG=∠EDN,∴180°−4α−=﹣90°,解得:α=30°.∴∠B=180°﹣4α=60°,故答案为:60°.22.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A(a,3),直线交l2交y轴于点B(0,﹣5)(1)求直线l2的解析式;(2)将△OAB沿直线l2翻折得到△CAB(其中点O的对应点为点C),求证AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.【解答】解:(1)∵直线l₁:y=x与直线l₂:y=kx+b相交于点A(a,3),∴A(4,3),∵直线交l₂交y轴于点B(0,﹣5),∴y=kx﹣5,把A(4,3)代入得,3=4k﹣5,∴k=2,∴直线l₂的解析式为y=2x﹣5;(2)∵OA==5,∴OA=OB,∴∠OAB=∠OBA,∵将△OAB沿直线l₂翻折得到△CAB,∴∠OAB=∠CAB,∴∠OBA=∠CAB,∴AC∥OB;(3)如图,过C作CM⊥OB于M,则CM=OD=4,∵BC=OB=5,∴BM=3,∴OB=2,∴C(4,﹣2),过P1作P1N⊥y轴于N,∵△BCP是等腰直角三角形,∴∠CBP1=90°,∴∠MCB=∠NBP1,∵BC=BP1,∴△BCM≌△P1BN(AAS),∴BN=CM=4,∴P1(3,﹣9);同理可得,P2(7,﹣6),P3(,﹣).。
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
较大。
;然后又用刻度尺测量橡皮擦的长度,小明同学几乎每天都要乘公交车上学.善于观察的他发现,无论盛夏还是严冬,在装有空调的公交车玻璃窗上.都会有小水滴附着在上面.那么,夏天,小水珠附着在玻_______________.(选填“内表面”或前段时间达州大部分地方出现较长时间的干旱,气象部门实施人工降雨,用飞机在高急剧下降,使空气中水蒸气成小冰晶,这些冰晶逐渐变大而下降,遇暖气后吸收热量而为雨滴落到地面.(均填物态变化名称)10、用同一热源给一定质量的水加热,其温度与时间的关系如右图中图线a 所示,若其它条件不变,(l)仅增加水的质量;(2)仅增大液面大气压强;(3)既增加水的质量,同时减小液面大气压强则二种情况中,温度与时间的关系图线分别对应、和(选填图中“a”、“b”、“c”或’' d ' ' )二、选择题(每题3分,计27分。
每小题给出的四个选项中,只有一个选项符合题A.2.5m B.2.5 dm C.2.5cm D.2.5 mm12、2013年1月11日到1月16日,我国大部分地区的空气被严重污染,有害物质含量严重超标,其中PM2.5是天气阴霾的主要原因,PM2.5是指大气中直径小于或等于2.5 μm的颗粒物,单个PM2.5是隐藏在空气的浮尘中,容易被吸人人的肺部造成危害,下列关于PM2.5颗粒物直径的单位换算正确的是A. 2.5um=2.5 um×10-6mB. 2.5um=2.5 ×10-5dmC. 2.5 um=2.5×10-6cmD. 2.5 um= 2.5 ×10-9m13、某同学的爸爸携全家驾车去太湖渔人码头游玩,在途经太湖路时,路边蹿出一只小猫,他紧急刹车才没撞到它.如下图为紧急刹车前后汽车行驶的速度-时间图象,根据图象分析不正确的是A.紧急刹车发生在8:27B.在8:23~8:27时间段内他驾车匀速前进C.在8:20~8:30时间段内他驾车的最大速度为60 km/hD.在8:20~8:30时间段内他驾车的平均速度为60 km/h14、“神十”上天,女宇航员王亚平在太空进行讲课,下列说法正确的是A.王亚平说话发出声音是因为声带在振动B.地球上的学生听到王亚平的声音是靠声波传回地球的C.在“天宫一号”里声音传播的速度为3.0×108米/秒D.王亚平讲课声音很大是因为她的声音频率很高15、在公共场所“轻声”说话是文明的表现,在课堂上“大声”回答问题才能让老师和同学们都能听清楚。
2022-2023学年人教版八年级上册数学期末模拟卷一.选择题(共10小题)1.下列等式从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2+6x﹣9=(x+3)(x﹣3)+6xC.x2﹣2xy﹣y2=(x﹣y)2D.x2﹣8x+16=(x﹣4)22.下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.面积相等的两个三角形全等3.对于分式,下列说法正确的是()A.当m=0时分式无意义B.当m=3时分式的值为0C.当m=﹣3时分式的值为0D.当m=﹣2时分式的值为04.已知点P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,则(a+b)2021的值为()A.0B.﹣1C.1D.(﹣3)20215.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB,其中符合要求的有()A.③④B.①②C.①②③④D.①②③④⑤6.如图,用1块边长为a的大正方形,4块边长为b的小正方形和4块长为a,宽为b的长方形(a>b),密铺成正方形ABCD,已知ab=2,正方形ABCD的面积为S,()A.若a=2b+1,则S=16B.若a=2b+2,则S=25C.若S=25,则a=2b+3D.若S=16,则a=2b+47.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+∠C;②若AB=4,OD=1,则S△ABO=2;③当∠C=60°时,AF+BE=AB;④若OD=a,AB+BC+CA =2b,则S△ABC=ab.其中正确的个数是()A.1B.2C.3D.48.如图,已知AB∥CD,AB+CD=BC,点G为AD的中点,GM⊥CD于点M,GN⊥BC 于点N,连接AG、BG.张宇同学根据已知条件给出了以下几个结论:①∠BGC=90°;②GM=GN;③BG平分∠ABC;④CG平分∠BCD.其中正确的个数有()A.1个B.2个C.3个D.4个9.如图,△ABC中,∠CAB=∠CBA=48°,点O为△ABC内一点,∠OAB=12°,∠OBC =18°,则∠ACO+∠AOB=()A.190°B.195°C.200°D.210°10.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个二.填空题(共5小题)11.如图,在同一平面内,线段AM⊥射线MN,垂足为M,线段BC⊥射线MN,垂足为C.若点P是射线MN上一点,连结P A、PB,记∠PBC=α,∠P AM=β,且0°<∠APB<180°,则∠APB=(用含α、β的代数式表示∠APB).12.如图,在边长为6的等边三角形ABC中,点O是∠ABC与∠BAC平分线的交点,过点O的直线分别与边AB,BC交于点D,E.点B关于DE的对称点为点P,连接PD,PE.PD,PE分别与AC交于点M,N,连接MO,NO,∠MON的度数为,若,则MN的长为.13.若,,都有意义,下列等式;中一定不成立的是.14.如图,在平面直角坐标系中,△AOB的边OA在x轴上,且OA=6,点B的坐标为(2,4)点D为OA的中点,AB的垂直平分线交x轴于点C,交AB于点E,点P为线段CE 上的一动点,当△APD的周长最小时,点P的坐标为.15.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN=度.三.解答题(共5小题)16.已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当=0时,求m的值.17.△ABC在平面直角坐标系中的位置如图所示,按下列要求解答:(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)写出△ABC关于x轴对称的图形△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△P AB的周长最短(只需作图、保留作图痕迹).18.我们知道,任意一个正整数k都可以进行这样的分解:k=m×n(m,n是正整数,且m ≤n),在k的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是k的最佳分解,并规定:f(k)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)=.【探索规律】(1)f(20)=;f(36)=;(2)若x是正整数,猜想f(x2+2x)=;【应用规律】(3)若f(x2+2x)=,其中x是正整数,求x的值;(4)若f(x2﹣48)=1,其中x是正整数,所有x的值的和为.19.如图,四边形ABCD中,E为AB边的中点.(1)如图1,若CE平分∠BCD,DE⊥CE,探究边AD,BC,CD的长度满足的数量关系;(2)如图2,若AB=3,BC=5,AD=2,∠DEC=120°,直接写出线段CD长度的最大值.20.如图,在五边形ABCDE中,AB=AE,BC=CD=DE,∠C=∠D=120°,AB⊥BC,AE⊥ED,请根据要求作答.(1)如图1,求∠A的度数;(2)如图2,连接AC,AD,小明发现该图形是轴对称图形.①除已知条件外再找出1组相等的线段和2组相等的角(不再添加辅助线);②请你用无刻度尺画出它的对称轴;(3)如图3,连接BE,已知∠ABE=∠AEB,请说明BE∥CD.。
2022-2023学年八年级数学上册期末模拟试题(满分100分,时间90分钟)一、单选题(每题3分,共30分)1.下列数是无理数的是( )A. 0B.C.D. 0.1010010001 2.如图,分别以Rt △ABC 的三条边为边向外作正方形,面积分别记为 ,,,若=8 ,=17 则的值为( )A. 17B. 25C. 15D. 313.如图是某校园的部分平面示意图,建立平面直角坐标系,若教学楼A 的坐标为(1,2),办公楼B 的坐标为(-2,-1),则体育馆C 的坐标为( ) A. (0,3) B. (2,-1) C.(1,-2) D. (3,0)4.如图,∠ABC =40°,BD 平分∠ABC ,过D 作DE ∥AB 交BC 于点E ,若点F 在AB 上,且满足DF =DE ,则∠DFB 的度数为( ) A. 20° B. 140° C. 40°或140° D. 20°或140°5.已知点在第四象限内,且点到轴的距离是,到轴的距离是,那么点的坐标是( ) A.B.C.D.6.如果样本方差S 2= [(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2+(x 5-2)2],则样本和x 1+x 2+x 3+x 4+x 5=( )A. 10B. 4C. 5D. 239第4题图第3题图第2题图7227.已知直线与相交于点,则关于,的二元一次方程组的解为()A. B. C. D.8.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A. 1个B. 2个C. 3个D. 4个9.如图,在ABC中,∠A=30°,则∠1+∠2的度数为()A. 210°B. 110°C. 150°D. 100°10.郑州市基于“720”水灾的反思,加强了市内排水设施的整修。
2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。
2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。
2013-2014学年第一学期期中考试科组质量分析语文七年级:一、试卷分析本次联考试卷由海湾九年级老师嫦雅老师出题,题型分为基础知识考查、古诗文默写考查、阅读文段考查(古文、文学作品考查)和写作四部分,总分100分,基本符合2013年中考命题方向,难度系为为0.78,命题评价为中等,基本符合教学大纲要求。
三、存在的问题:1、从试卷各小题得分来看,古诗文默写和作文得分偏低,部分班级在字音、词语的运用和古诗文默写得分有待提高,需要加强针对性的训练和落实知识点。
2、从横向比较分析:优良率偏低,高分层不多,尖子生层面太少,不极格人数较多,这一多一少导致平均分偏低。
3、学情分析:学生的基础知识得分不高,课外阅读理解部分失分严重,是重灾区。
初步分析认为主要原因是学生刚由小学升入初中,不了解初中语文学习目标和学习重点,仍习惯性地沿用着小学的学习方法,学习较被动,主动性不够,即使重视字词的学习,却因失去了老师指导下的反复复习,而对字词识记不牢固,特别是字音和默写部分错别字太多,面对拓展性开放式表达题,不会表达自己的观念,阅读理解仅停留在简单的是非判断,而不习惯不具备简单的分析评价,价值判断与表达能力均有限。
部分学生作文未写够字数,作文还停留在小学生层面,需要进行系统训练。
八年级:一、试卷分析本次考试由外校的老师命题,考试时间100分钟,满分100分。
考试范围为第一、二、五单元及附录诗歌五首。
参加联考联改的学校有六间。
考试的过程中对一些试卷上出现的错题漏题进行了及时纠正,在一定程度上对学生造成了干扰,但总体来说,考试过程还算顺利。
结论:试卷难易适中;平均分,优秀率,不及格人数都比七年级下降较大,成绩出现个位数的学生比七年级有所增加;全级一分二率上升空间还有很大;学生基础薄弱,语文教学有待更好的改进,教学任重道远。
总结:在六所联考联改的学校中,海湾中学的平均分排第五,及格率排第五,优秀率排第四。
“一分两率”的排名都比较落后。
2013—2014学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.) 1x 的取值范围是A.3x 2≥B. 3x 2>C. 2x 3≥ D. 2x 3>2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是 A.平行四边形 B. 菱形 C.正方形 D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限 7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是 A .1.65米是该班学生身高的平均水平 B .班上比小华高的学生人数不会超过25人 C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米10.如图,已知ABCD的面积为48,E 为AB连接DE ,则△ODE 的面积为 A.8 B.6 C.4 D.3第4题图第10题图 B D二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。
2013-2014学年上学期期末模拟试卷
一、选择题:(每题3分,共24分)
1.以下五家银行行标中,是轴对称图形的有()
A、1个 B. 2个 C. 3个 D. 4个
2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()
A.5
B.6
C.11
D.16
3. 已知
m6
=
x,3
=
n
x,则2-m n
x的值为()
A、9
B、
3
4C、12 D、
4
3
4. 一个多边形的内角和是外角和的2倍,它的边数是()
A.5
B.6
C.7
D.8
5.下列运算正确的是()
A.a
a
a=
-2
3B.6
3
2a
a
a=
⋅C.326
()
a a
=D.()3
39
3a
a=
6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()
A.9cm
B. 8 cm
C. 7 cm
D.6 cm
7.等腰三角形一腰上的高与另一腰的夹角为30︒,则顶角的度数是()
A. 60︒
B. 120︒
C. 60︒或150︒
D. 60︒或120︒
8.若1
=
x,2
1
=
y
,则
2
24
4y
xy
x+
+的值是()
A.2 B.4 C.2
3
D.2
1
9.已知
216
x x k
++是完全平方式,则常数k等于()
A.64
B.48
C.32
D.16
10.A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则列方程()
A.
9
4
48
4
48
=
-
+
+x
x B.
9
4
48
=
+
x C.
9
4
48
4
48
=
-
+
+x
x D.
9
4
96
4
96
=
-
+
+x
x
11、解方程32121---=-x x x 去分母得 ( )
A .()2311---=x x
B . ()x x ---=2311 C.()2311---=x x D. ()2311---=-x x
12、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A. a b
b +倍 B. b a b +倍 C.b a b a +-倍 D. b a b a -+倍
二、填空题:(每空3分,共24分)
13.分解因式2228a b -= .
14.人体中成熟红细胞的平均直径为0.000 007 67m ,用科学记数法表示为 m
15. 计算(2.4×810-)×(5×3
10)= 。
16.如图,AB=AC,∠A=40︒,AB 的垂直平分线MN 交AC 于点D ,求∠DBC=
17、在△ABC 中,DE 是AC 的垂直平分线,AE=3cm , △ABD 的周长为10cm ,求△ABC 的周长= cm 。
.
18、找规律:
3579
234,,,,x x x x y y y y --,(其中0x ≠),则第9个分式
三.解答题(共50分)
19. 计算(每题4分) (1)23223(2)()ab c a b ---÷ (2)
23()(2)(2)y z y z z y --+-+
(3)先化解,再求值:2212111a a a a a +-+⎛⎫+⋅ ⎪-⎝⎭,其中a=2.
F E D C B A
20.因式分解:(1)39x x - (2)22363ax axy ay ++
21.解下列分式方程 (每题4分共8分)
(1)
2131x x =+- (2)311(1)(2)x x x x -=--+
22.如图,在ABC 中,D 是BC 的中点,DE ⊥AB,DF ⊥AC,垂足分别是E ,F ,BE=CF.求证:AD 是ABC 的角平分线。
(6分)
23. 已知:如图,△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE=CD .
求证:DB=DE .(6分)
24.张明与李强共同清点一批图书,已知张明清点完200本图书所用时间与李强清点完300本图书所用时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.(7分)
_E _D _C _A _B。