数字信号处理3-离散傅里叶变换
- 格式:ppt
- 大小:1.36 MB
- 文档页数:3
课程名称:数字信号处理 (Digital Signal Processing)课程性质: 专业基础课 授课专业: 计算机科学与技术、自动化第3章 离散傅里叶变换(DFT)电子与信息工程学院 金海红数字信号处理引 言DFT: Discrete Fourier Transform 离散傅里叶变换是有限长序列的离散频域表示,不 仅具有明确的物理意义,相对于DTFT他更便于用 计算机处理。
但是,直至上个世纪六十年代,由于 数字计算机的处理速度较低以及离散傅里叶变换的 计算量较大,离散傅里叶变换长期得不到真正的应 用,快速离散傅里叶变换算法的提出,才得以显现 出离散傅里叶变换的强大功能,并被广泛地应用于 各种数字信号处理系统中。
2数字信号处理引 言Fourier Fourier变换的几种可能形式 变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换 连续时间、离散频率—傅里叶级数 离散时间、连续频率—序列的傅里叶变换 离散时间、离散频率—离散傅里叶变换3数字信号处理1、连续时间、连续频率—傅里叶变换定义X ( jΩ) = ∫ x(t )e − jΩt dt−∞ ∞ ∞1 x(t ) = 2π∫−∞X ( jΩ)e jΩt d Ω结论: z 时域连续函数造成频域是非周期的谱 z 而时域的非周期造成频域是连续的谱密度函数4数字信号处理2、连续时间、离散频率—傅里叶级数 义定1 T0 / 2 − jk Ω0t X ( jk Ω0 ) = ∫ x(t )e dt − T / 2 T0 0 x(t ) =k =−∞∑∞X ( jk Ω0 )e jk Ω0t结论: z 时域连续函数造成频域是非周期的谱 z 频域的离散对应时域是周期函数。
5数字信号处理3、离散时间、连续频率—序列的傅里叶变换定义X (e jω ) = 1 x ( n) = 2πn =−∞∑π−∞x(n)e − jωn X (e jω )e jωn dω∫π结论: z 时域的离散化造成频域的周期延拓 z 时域的非周期对应于频域的连续6数字信号处理4、离散时间、离散频率—离散傅里叶变换定义N −1 −j2π nk N 2π nk NX ( k ) = ∑ x ( n)e 1 x(n) = Nn =0 N −1 k =0∑ X ( k )ej结论: 一个域的离散造成另一个域的周期延拓,因此离 散傅里叶变换的时域和频域都是离散的和周期的7数字信号处理四种傅里叶变换形式的归纳频率函数非周期和连续 非周期和离散(Ω0=2π/T0) 周期(Ωs=2π/T)和连续 周期(Ωs=2π/T)和 离散(Ω0=2π/T0)8时间函数连续和非周期 连续和周期(T0) 离散(T)和非周期 离散(T)和周期(T0)数字信号处理Contents1. 2. 3. 4.离散傅里叶变换(DFT)的定义 离散傅里叶变换(DFT)的基本性质 频率域采样 DFT的应用举例9数字信号处理3.1离散傅里叶变换的定义1. 1.余数运算表达式 余数运算表达式预备知识如果n = n1 + mN ,0 ≤ n1 ≤ N − 1 ,m为整数;则( (n ) )N= ( n1 ) ,此运算符表示 n 被 N 除,商为 m,余数为 n1 。
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
第三章离散时间信号的傅里叶变换课程:数字信号处理目录第三章离散时间信号的傅里叶变换 (3)教学目标 (3)3.1引言 (3)3.2傅里叶级数CFS (4)3.2.1傅里叶级数CFS定义 (4)3.2.2傅里叶级数CFS性质 (6)3.3傅里叶变换CFT (7)3.3.1傅里叶变换CFT定义 (7)3.3.2傅里叶变换CFT的性质 (8)3.4离散时间信号傅里叶变换DTFT (9)3.4.1离散时间信号傅里叶变换DTFT定义 (9)3.4.2离散时间信号傅里叶变换的性质 (10)3.5周期序列的离散傅里叶级数(DFS) (14)3.5.1周期序列的离散傅里叶级数的定义 (14)3.5.2周期序列的离散傅里叶级数的性质 (18)3.6离散傅里叶变换(DFT) (20)3.6.1离散傅里叶变换(DFT) (20)3.6.2离散傅里叶变换的性质 (23)3.7CFS、CFT、DTFT、DFS和DFT的区别与联系 (25)3.8用DFT计算模拟信号的傅里叶分析 (28)3.9实验 (30)本章小结 (32)习题 (33)参考文献: (36)第三章离散时间信号的傅里叶变换教学目标本章讲解由时域到频域的傅里叶变换,频域观察信号有助于进一步揭示系统的本质,对于某些系统可以极大的简化其设计和分析过程。
通过本章的学习,要理解连续时间信号的傅里叶级数和傅里叶变换的和离散时间信号基本概念、性质和应用;了解一些典型信号的傅里叶变换;理解连续时间信号的傅里叶级数(CFS)、连续时间信号的傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT)它们相互间的区别与联系;掌握傅里叶变换的参数选择,以及这些参数对傅里叶变换性能的影响;了解信号处理中其它算法(卷积、相关等)可以通过离散傅里叶变换(DFT)来实现。
3.1引言一束白光透过三棱镜,可以分解为不同颜色的光,这些光再通过三棱镜,就会得到白光。
第三章.离散傅里叶变换(DFT )一 离散傅里叶变换的定义及物理意义1 DFT 定义设x(n)是一个长度为M 的有限长序列10()[()]()0,1,,1N kn N n X k D FT x n x n Wk N -====-∑ 逆变换:101()[()]()N kn N k x n ID FT X k X k W N --===∑2 DFT 与傅里叶变换和z 变换的关系2()()j kN z e X k X z π== 3 DET 的隐含周期性在进行DFT 时,有限长序列都是作为周期序列的一个周期来考虑的。
因此,凡是涉及DFT 关系,都隐含有周期性意义二:离散傅里叶变换的基本性质1. 线性性质1212[()()]()()D FT ax n bx n aX k bX k +=+ a ,b 为常数2. 循环移位性质2,1序列的循环移位长度为N 的有限长序列x (n )的圆周移位定义为N N y(n )x ((n m ))R (n )=+2.2 时域循环移位定理设x (n )是长度为N 的有限长序列,y (n )为x (n )圆周移位则圆周移位后的DFT 为()[()][(())()]()m k N N N Y k D FT y n D FT x n m R n W X k -==+=2.3频域循环移位定理频域有限长序列X (k ),也可看成是分布在一个N 等分的圆周上由于频域与时域的对偶关系,有如下性质若 ()[()]X k DFT x n =则 2[(())()]()()j nl nl N N N N IDFT X k l R k W x n ex n π-+==3 循环卷积定理3.1定义:设x 1(n )和x 2(n )都是点数为N 的有限长序列(0≤n ≤N -1),且有:1122[()]()[()]()DFT x n X k DFT x n X k ==若12()()()Y k X k X k =则11201210()[()]()(())()()(())()N N N m N N N m y n ID FT Y k x m x n m R n xm x n m R n -=-===-=-∑∑上式所表示的运算称为x 1(n )和x 2(n )的N 点圆周卷积3.2 循环卷积定理若12()()()y n x n x n = x 1(n ),x 2(n )皆为N 点有限长序列则 1120121012()[()]1()(())()1()(())()1()()N N N l N N N l Y k D FT y n X l X k l R k NX l X k l R k NX k X k N -=-===-=-=∑∑ 3.3 复共轭序列的DFT设x *(n )为x (n )的共轭复序列,已知X (k )= DFT[x (n )]则DFT [x *(n )]=X *(N-k ) 0≤k ≤N -1且 X (N )=X (0)3.4 共轭对称性三 频域采样1频域采样定理如果序列x (n )长度为M ,则只有当频域采样点数N>M 时,才有()()()()()()N N N N r x n x n R n x n rN R n x n ∞=-∞==+=∑即由频域采样X (k )恢复原序列x (n ),否则产生时域混叠现象。