第4章 生物信息的传递(下)---!!!!!!
- 格式:ppt
- 大小:11.44 MB
- 文档页数:16
第一章 绪论1, 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN 反向双平行双螺旋模型。
反向双平行双螺旋模型。
2, 写出DNA 和RNA 的英文全称。
答:脱氧核糖核酸(答:脱氧核糖核酸(DNA, Deoxyribonucleic acid DNA, Deoxyribonucleic acid DNA, Deoxyribonucleic acid)), 核糖核酸(核糖核酸(RNA, Ribonucleic acid RNA, Ribonucleic acid RNA, Ribonucleic acid))3, 试述“有其父必有其子”的生物学本质。
答:其生物学本质是基因遗传。
子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
自于父方,一般来自于母方。
4, 早期主要有哪些实验证实DNA 是遗传物质?写出这些实验的主要步骤。
答:一,肺炎双球菌感染实验,答:一,肺炎双球菌感染实验,11,R 型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
22,S 型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
33,用加热的方法杀死S 型细菌后注入到小鼠体内,小鼠不死亡;后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:二,噬菌体侵染细菌的实验:11,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
2 2 2,,DNA 中P 的含量多,蛋白质中P 的含量少;蛋白质中有S 而DNA 中没有S ,所以用放射性同位素35S 标记一部分噬菌体的蛋白质,用放射性同位素32P 标记另一部分噬菌体的DNA DNA。
生物信息的传递(上)—从DNA到RNA基因表达:是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。
转录(transcription):以DNA为模板,按照碱基互补原则合成一条单链RNA,从而将DNA 中的遗传信息转移到RNA中去的过程称为转录。
编码链(coding strand)=有意义链模板链(template strand)=反义链不对称转录(asymmetric transcription):转录仅发生在DNA的一条链上。
启动子(promoter):是DNA转录起始信号的一段序列,它能指导全酶与模板正确的结合,并活化酶使之具有起始特异性转录形式。
终止子(terminator):转录终止的信号,其作用是在DNA模板特异位置处终止RNA的合成。
转录单位:DNA链上从启动子直到终止子为止的长度称为一个转录单位。
3.1 RNA的转录转录的基本过程都包括:模板识别、转录起始、通过启动子及转录的延伸和终止。
1、模板识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。
转录起始前,启动子附近的DNA双链分开形成转录泡以促使底物核糖核苷酸与模板DNA的碱基配对。
2、转录起始就是RNA链上第一个核苷酸键的产生。
3、转录起始后直到形成9个核苷酸短链是通过启动子阶段,通过启动子的时间越短,该基因转录起始的频率也越高。
4、RNA聚合酶离开启动子,沿DNA链移动并使新生RNA链不断伸长的过程就是转录的延伸。
5、当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA 杂合物分离,这就是转录的终止。
3.1.1 转录的基本过程RNA合成的基本特点:1.底物是:ATP、GTP、CTP、UTP2.在聚合酶作用下形成磷酸酯键3.RNA的碱基顺序由DNA的顺序决定4.仅以一条DNA链作为模板5.合成方向为5’→3’6.合成中不需要引物3.1.2 转录机器的主要成分原核生物RNA聚合酶:亚基基因相对分子量亚基数组分功能αrpoA 3.65×10 4 2 核心酶核心酶组装,启动子识别βrpoB 1.51×10 5 1 核心酶β和β’共同形成RNA合成的活性中心β’rpoC 1.55×10 5 1 核心酶?11×10 4 1 核心酶未知σrpoD 7.0×10 4 1 σ因子存在多种σ因子,用于识别不同的启动子1、RNA聚合酶大多数原核生物RNA聚合酶的组成是相同的,大肠杆菌RNA聚合酶由2个α亚基、一个β亚基、一个β’亚基和一个ω亚基组成,称为核心酶。
名词解释第一章绪论1 分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
2 DNA重组技术是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
3 功能基因组学又往往被称为后基因组学,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。
第二章染色体与DNA1组蛋白是染色体的结构蛋白,其与DNA组成核小体。
2 C值:一种生物单倍体基因组DNA的总量。
3 DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
4DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
5DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
6核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。
每个核小体只有一个H1。
7DNA的半保留复制是DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的。
8复制时,双链DNA要解开成两股链进行,使复制起点呈叉状,被称为复制叉。
9复制子为生物体DNA的复制单位。
10错配 (mismatch):DNA分子上的碱基错配称点突变(point mutation)11缺失:一个碱基或一段核苷酸链从DNA大分子上消失。
12插入:原来没有的一个碱基或一段核苷酸链插入到DNA大分子中间。
13框移突变是指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变。
第四章生物信息的传递(下)从——从mRNA到蛋白质第四节蛋白质合成的生物学机制五、蛋白质前体的加工新生的多肽链大多数是没有功能的,必须经过加工修饰才能变为有功能的蛋白质。
1. N端fMet或Met的切除细菌新合成的肽链第一个氨基酸残基是什么?(甲酰甲硫氨酸)。
真核生物新合成的肽链第一个氨基酸残基是什么?(甲硫氨酸)。
细菌蛋白质N端的甲酰基能被脱甲酰化酶水解,不管是原核生物还是真核生物N端的甲硫氨酸往往在多肽链合成完毕之前就被切除。
有些新生蛋白质在去掉N端一部分残基后变成有功能的蛋白质。
有些动物病毒如脊髓灰质炎病毒的mRNA可翻译成很长的多肽链,含多种病毒蛋白,经过蛋白酶在特定位置上水解后得到几个有功能的蛋白质分子。
2. 二硫键的形成mRNA中没有胱氨酸的密码子,而不少蛋白质都含有二硫键,这是蛋白质合成后通过两个半胱氨酸的氧化作用生成的。
3. 特定氨基酸的修饰(1)氨基酸侧链的修饰包括磷酸化、糖基化、甲基化、乙酰化、羟基化和羧基化。
A、磷酸化:主要由多种蛋白激酶催化,发生在丝氨酸、苏氨酸、酪氨酸等氨基酸的侧链。
B、糖基化:大多数糖基化是由内质网中的糖基化酶催化的。
C、甲基化:蛋白质的甲基化是由N-甲基转移酶催化的,该酶主要存在于细胞质基质中。
甲基化包括发生在Arg(精氨酸)、His(组氨酸)和Gln(谷氨酰胺)的侧链的N-甲基化以及Glu(谷氨酸)和Asp(天冬氨酸)侧基的O-甲基化。
D、乙酰化:N-乙酰转移酶催化多肽链的N端乙酰化。
发生在赖氨酸侧链上的ε-NH2.(2)蛋白质N-糖基化修饰糖蛋白主要是通过蛋白质侧链上的天冬氨酸、丝氨酸、苏氨酸残基加上糖基出现的。
在内质网膜内侧的脂肪酸长链被磷酸化后加上由N-乙酰葡萄糖胺、甘露糖、葡萄糖组成的低聚糖链。
在糖基化过程中,先切去信号肽,再由低聚糖转移酶催化将N-乙酰葡萄糖胺、甘露糖、葡萄糖组成的低聚糖链转移到肽链N-端的天冬氨酸残基上。
Membrance(膜)oligosacchary I transferase(低聚糖转移酶)Dolichol phosphate(磷酸脂多萜醇)N-Acetylglucosamine(N-乙酰葡萄糖胺)Mannose(甘露糖)Glucose(葡萄糖)Asn(天冬氨酸)(3)蛋白质N-糖基化的主要场所是内质网4. 切除新生肽链中非功能片段(1)前胰岛素原蛋白翻译后成熟过程示意图新合成的胰岛素前体是前胰岛素原,必须先切去信号肽变成胰岛素原,再切去B-肽,才变成有活性的胰岛素。
第一章绪论1953年,Watson和Crick提出双螺旋模型。
1983年,美国遗传学家McClintock由于在50年代提出并发现了可移动的遗传因子而获得诺贝尔生理学奖或医学奖。
第二章染色体与DNA染色体组成:(1)组蛋白:H1、H2A、H2B、H3、H4。
(2)非组蛋白(3)DNA(4)RNA染色体包装:①核小体:200bp左右DNA分子盘绕在H2A、H2B、H3、H4各两分子生成的八聚体外,H1位于核小体外。
7②螺线管:染色细丝盘绕成而成,每一个螺旋包含6个核小体。
6③超螺旋:30个30nm螺线管缠绕而成。
40④染色体:超螺旋圆筒进一步压缩。
5真核生物基因组特点:①基因组庞大;②基因组存在大量重复序列;③大部分为非编码序列;④转录产物为单顺反子;⑤断裂基因,有内含子结构;⑥存在大量顺式作用元件;⑦存在大量的DNA多样性,包括单核苷酸多态性和串联重复序列多态性;⑧具有端粒结构。
C值:生物单倍体基因组DNA的总量。
原核生物基因组特点:①结构简练;②存在转录单元;③有重叠基因。
DNA的一级结构:4种核苷酸的连接及其排列顺序,表示该DNA分子的化学构成。
DNA的二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。
①右手螺旋:A-DNA:与B-DNA比大沟变窄,小沟变宽。
每圈螺旋11个碱基对B-DNA:是大多数DNA的构象。
相邻碱基对平面之间的距离为0.34nm,即顺中心轴方向,每个0.34nm有一个核苷酸,以3.4nm为一个结构重复周期,双螺旋的直径为2.0nm。
②左手螺旋:Z-DNA:每圈螺旋含12对碱基,大沟平坦,小沟深而窄,核苷酸构象順反相间,螺旋骨架成呈Z字形。
DNA的变性:DNA溶液温度接近沸点或者pH较高时,DNA双链的氢键断裂,最后完全变成单链的过程。
复性是热变性的DNA经缓慢冷却,从单链恢复成双链的过程。
Tm值:DNA在260nm处吸光度最大。
将吸光度相对温度变化绘制曲线,吸光度增大到最DNA的解链温度(熔点)。
第四章生物信息的传递(下)--从RNA到蛋白质习题一名词解释1.密码子(codon)2.同义密码子(synonymous codon)3.反密码子(anticodon)4.信号肽(signal peptide)5.简并密码(degenerate code)6.氨酰基部位(aminoacyl site)7.肽酰基部位(peptidy site)8.肽基转移酶(peptidyl transferase)9.氨酰- tRNA合成酶(amino acy-tRNA synthetase)二英文缩写符号1.IF(initiation factor):2.EF(elongation factor):3.RF(release factor):4.hnRNA(heterogeneous nuclear RNA):5.fMet-tRNA f :6.Met-tRNA i :三填空题1.蛋白质的生物合成是以______作为模板,______作为运输氨基酸的工具,_____作为合成的场所。
2.细胞内多肽链合成的方向是从_____端到______端,而阅读mRNA的方向是从____端到____端。
3.核糖体上能够结合tRNA的部位有_____部位,______部位。
4.蛋白质的生物合成通常以_______作为起始密码子,有时也以_____作为起始密码子,以______,______,和______作为终止密码子。
5.SD序列是指原核细胞mRNA的5ˊ端富含_____碱基的序列,它可以和16SrRNA的3ˊ端的_____序列互补配对,而帮助起始密码子的识别。
6.原核生物蛋白质合成的起始因子(IF)有_____种,延伸因子(EF)有_____种,终止释放(RF)有_____种;而真核生物细胞质蛋白质合成的延伸因子通常有_____种,终止释放因子有_____种。
7.原核生物蛋白质合成中第一个被掺入的氨基酸是_____。
8.某一tRNA的反密码子是GGC,它可识别的密码子为_____和_____。
第一部分课程性质与目标一、课程性质和特点《分子生物学》课程是我省高等教育自学考试生物工程专业(独立本科段)的一门重要的专业必修课程,通过本课程的学习要求学生熟知核酸(尤其是DNA)的基本生物化学特性,生物信息的储存、传递与表达过程,特别是基因的一般结构与生物功能,基因表达的调控原理。
掌握分子克隆与DNA重组的基本技术与原理,了解现代分子生物学基本研究方法,了解基因治疗与人类基因组计划、克隆技术的新成果和新进展。
激发学生对生命本质探索的热情,培养具备生命科学的基本知识和较系统的生物技术及其产业化的科学原理和工艺技术过程的基本理论和基本技能,能在生物产业领域的公司、工厂等企业单位从事生物工程及其高新技术产品生产、开发研究和企业经营管理工作的高级应用人才。
本课程在内容上共分十章,第一章介绍了分子生物学研究的主要内容及发展简况。
第二章是染色质、染色体、基因和基因组,重点介绍了遗传物质的分子结构、性质和功能,重点介绍了核酸的结构、功能、变性、复性和杂交等基本概念,也介绍了病毒核酸的相关知识和反义技术特点。
染色质和染色体的形态、组成和功能,基因的概念、功能和基本特征,基因组的概念、结构特点及有关基因组研究中基本理论和内容。
DNA的复制、突变、损伤和修复,主要介绍了DNA复制的过程、基因突变损伤和修复功能转座子结构特征和转座机制、以及遗传重组的机制。
第三、四章主要从动态角度探讨了遗传物质的运动的基本规律。
第三章是转录,重点介绍了转录的基本原理、转录过程及转录后加工过程和机制。
第四章是蛋白质的翻译,内容包括遗传密码、蛋白质合成、蛋白质的运转及蛋白质合成后的折叠和修饰加工,最后从应用的角度介绍了功能蛋白质研究的最新进展。
第五章介绍了分子生物学目前常用的基本研究方法。
第六、七章是基因表达的调控,分别从原核生物和真核生物两方面介绍了基因表达在转录和翻译水平上调控的机制。
第八章主要介绍了一些人类疾病的分子机制,以及基因治疗的概念。
第四章生物信息的传递下-从mRNA到蛋白质练习题一、选择题【单选题】1.下列氨基酸活化的叙述哪项是错误的A.活化的部位是氨基酸的α-羧基B.活化的部位是氨基酸的α-氨基,C.活化后的形式是氨基酰-tRNAD.活化的酶是氨基酰-tRNA合成酶E.氨基酰tRNA既是活化形式又是运输形式2.氨基酰tRNA的3’末端腺苷酸与氨基酸相连的基团是A.1’-OHB.2’-磷酸C.2’-OHD. 3’-OH,E.3’-磷酸5.代表氨基酸的密码子是A.UGAB.UAGC.UAAD.UGGE.UGA和UAG6.蛋白质生物合成中多肽链的氨基酸排列顺序取决于A.相应tRNA专一性B.相应氨基酰tRNA合成酶的专一性C.相应mRNA中核苷酸排列顺序D.相应tRNA上的反密码子E.相应rRNA的专一性9.能出现在蛋白质分子中的氨基酸哪一种没有遗传密码A.色氨酸B.甲硫氨酸C.羟脯氨酸D.谷氨酰胺E.组氨酸11.下述原核生物蛋白质翻译特点错误的是A.翻译与转录偶联进行B.各种RNA中mRNA半寿期最短C.起始阶段需A TPD.有三种释放因子分别起作用E.合成场所为70S核糖体18.氨基酰-tRNA合成酶的特点是A.存在于细胞核内B.只对氨基酸的识别有专一性C.只对tRNA的识别有专一性D.催化反应需GTPE.对氨基酸、tRNA的识别都有专一性23.蛋白质合成时肽链合成终止的原因是A.已达到mRNA分子的尽头B.特异的tRNA识别终止密码子C.释放因子能识别终止密码子并进入A位D.终止密码子本身具酯酶作用,可水解肽酰基与tRNA之间的酯键E.终止密码子部位有较大阻力,核糖体无法沿mRNA移动24.下列关于翻译的描述错误的是A.氨基酸必须活化成活性氨基酸B.氨基酸的羧基端被活化C.活化的氨基酸被搬运到核糖体上D.体内所有的氨基酸都有相应的密码E.tRNA的反密码子与mRNA上的密码子按碱基配对原则反向结合1、单项选择题参考答案及解析:1.B 2.D 3.C 信号肽是指用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)一般由15~30个氨基酸组成。
现在分子生物学作业及答案第一章:分子生物学绪论1、分子生物学的定义。
从分子水平阐明生命现象和生物学规律。
研究蛋白质及核酸等生物大分子特定的空间结构及结构的运动变化与其生物学功能关系。
2、简述分子生物学的主要研究内容。
分子生物学研究内容(1)DNA重组技术(基因工程)(2)基因的表达调控(3)生物大分子的结构和功能研究(结构分子生物学)(4)基因组、功能基因组与生物信息学研究3、谈谈你对分子生物学未来发展的看法?第二章:DNA结构(1)1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容?1953年由美国科学家Watson和英国科学家Crick。
1、主链是由两条反向平行的多核苷酸链围绕同一中心轴构成的右手螺旋结构,脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架2、两条链上的碱基以氢键相连,G与C配对,A与T配对。
嘌呤和嘧啶碱基对层叠于双螺旋的内侧2、DNA的双螺旋结构有哪几种不同形式,各有何特点?右手螺旋:A-DNA,B-DNA、左手螺旋:Z-DNAB-DNA构象:相对湿度为92%时,DNA钠盐纤维为B-DNA构象。
在天然情况下,绝大多数DNA以B构象存在。
A-DNA构象:当相对湿度改变(75%以下)或由钠盐变为钾盐、铯盐,DNA的结构可成为A构象。
它是B-DNA螺旋拧得更紧的状态。
DNA-RNA杂交分子、RNA-RNA双链分子均采取A构象。
Z-DNA构象:在一定的条件下(如高盐浓度),DNA可能出现Z构象。
Z-DNA是左手双螺旋,磷酸核糖骨架呈Z字性走向。
不存在大沟,小沟窄而深,并具有更多的负电荷密度。
Z-DNA的存在与基因的表达调控有关。
3、简述DNA的C-值以及C-值矛盾(C Value paradox)。
形态学的复杂程度(物种的生物复杂性)与C-值大小的不一致,称为C值矛盾(C-值悖理)(C-值是一种生物的单倍体基因组DNA的总量。
)4、简述真核生物染色体上组蛋白的种类,组蛋白修饰的种类及其生物学意义。
第二章染色体与DNA1、染色体包括DNA和蛋白质两大部分2、由于细胞内的DNA主要在染色体上,所以说遗传物质的主要载体是染色体3、下列哪一项对于DNA作为遗传物质是不重要的:(B)A.DNA分子双链且序列互补B.DNA分子的长度可以非常长,可以长到将整个基因组的信息都包含在一条DNA分子上C.DNA可以与RNA形成碱基互补D.DNA聚合酶有3` 5`的校读功能4、下列有关C值的叙述正确的是:(C)A.生物的进化程度越高,其C值就越大B.C值与有机体的形态学复杂性成反比C.每一个生物门中的C值与有机体的形态学复杂性大致成比例D.C值与有机体的形态学复杂性成正比5、人是最高等生物,其基因组碱基对数目(2.9×109)是动物界最大的.(×)6..以下DNA(只写出一条链的序列)中,解链温度最高的是:(C)A.TTCAAGAGACTT (4个GC对)B.TCACAGTACGTC (6个GC对)C.GGACCTCTCAGG (8个GC对)D.CGTAGAGAGTCC (7个GC对)7、一个复制子是:(C)A.细胞分离期间复制产物被分离之后的DNA片段B.复制的DNA片段和在此过程中所需的酶和蛋白C.任何自发复制的DNA序列(它与复制起始点相连)D.复制起点和复制叉之间的DNA片段8、真核生物复制子有下列特征,它们:(B)A.复制元的大小都是一样的. B几个相邻的复制元可形成复制元簇C.不同复制元簇在复制起始的时间上是同步的.D.复制时间比原核生物短.9、下列有关冈崎片段的描述中,正确的是:(A)A.冈崎片段出现在DNA复制过程的滞后链中B.冈崎片段的发现能证明DNA复制是以半保留复制方式进行的C.冈崎片段只在原核生物DNA复制中出现D.冈崎片段只在真核生物DNA复制中出现10、原核生物DNA复制过程中,冈崎片段合成的方向与复制叉移动的方向相同.(×)11、聚合反应的特点:(1) 以单链DNA为模板(2) 以dNTP为原料(3) 引物提供3´-OH (4) 聚合方向为5´→3´12、大肠杆菌DNA聚合酶I的作用不包括:(D)A.5` 3`外切酶活性B.3` 5`外切酶活性C.5` 3`DNA聚合酶活性D.3` 5`DNA聚合酶活性13、真核细胞的DNA聚合酶和原核细胞的DNA聚合酶一样,都具有核酸外切酶活性.(×)A.DNA Helicase的生物学功能是:(C)A.缓解DNA复制时产生的twisting problemB.防止DNA的过度超螺旋C.解开双螺旋DNA双链的配对D.促进引物酶的结合14、DNA复制过程,滞后链的引发是由引发体来完成的.15、真核生物复制起始点的特征包括(B )A、富含GC区B、富含AT区C、Z-DNAD、无明显特征16、基因组DNA复制时,先导链的引物是DNA,后随链的引物是RNA(×)17、原核DNA合成酶中(C )的主要功能是合成前导链和冈崎片段A、DNA聚合酶ⅠB、DNA聚合酶ⅡC、DNA聚合酶ⅢD、引物酶18、下面关于DNA复制的说法,正确的是:DA.按全保留机制进行B.按3` 5`方向进行C.需要4种NTP的加入D.需要DNA聚合酶的作用19、有关DNA复制的叙述,错误的是:ADA.新链的方向与模板链方向相同B.新链的延伸方向是5` 3`C.需要DNA聚合酶参加D.合成的新链与模板链完全相同20、DNA复制的调控主要发生在起始阶段,即一旦复制开始它将连续进行直至整个基因组复制完毕.(×)21、新生DNA链上的甲基化修饰在帮助DNA修复系统识别亲本链过程中起决定作用.(×)22、有关复制转座,不正确的叙述是:CA.复制转座子,即在老位点留有一个拷贝B.要求有转座酶C.移动元件转到一个新的位点,在原位点上不留元件D.要求有解离酶23、在真核生物核内。