药物代谢动力学
- 格式:doc
- 大小:138.16 KB
- 文档页数:5
第三章药物代谢动力学学习目标:1.掌握药物的体内过程(吸收、分布、代谢、排泄)、首关消除(首关效应)、酶诱导剂和酶抑制剂、恒比消除和恒量消除、半衰期、稳态血药浓度、生物利用度等概念。
2.熟悉表观分布容积概念。
3.了解其他内容。
基础知识一、药物的跨膜转运:(一)被动转运:简单扩散、滤过、易化扩散。
(二)主动转运。
二、药物的体内过程:吸收、分布、生物转化和排泄。
(一)吸收 : 药物从给药部位进入血液循环的过程。
给药的途径:1.口服给药:首关消除(首关效应、首关代谢、第一关卡效应):口服药物在从胃肠道进入肠壁细胞和门静脉系统首次通过肝脏时被部分代谢灭活,使进入体循环的有效药量减少的现象。
2.舌下给药:3.直肠给药:4.皮下注射及肌内注射:5.静脉注射和静脉点滴:6.吸入给药:7.皮肤、粘膜给药:(二)分布:药物吸收后从血液循环到达机体各个部位和组织的过程。
影响吸收的因素:血浆蛋白结合率、局部器官血流量、药物与组织的亲和力、体液PH值、体内屏障(血脑屏障、胎盘屏障、血眼屏障)。
(三)生物转化(代谢):进入机体内的药物发生的化学结构变化的过程。
生物转化的主要器官是肝脏。
1.生物转化的意义:灭活和活化。
2.生物转化的方式:i相反应:氧化、还原和水解反应,n相反应:结合反应。
3.药物生物转化酶系:( 1)微粒体酶( 2)非微粒体酶4.酶诱导与酶抑制( 1)酶诱导:酶活性增强。
药酶诱导剂凡能使肝药酶活性增强或合成增多的药物。
( 2)酶抑制:酶活性降低。
药酶抑制剂凡能使肝药酶活性降低或合成减少的药物。
(四)排泄:药物原型及其代谢产物经排泄器官或分泌器官排出体外的过程。
排泄的主要器官是肾脏。
1.肾排泄:肾小球滤过、肾小管分泌、肾小球重吸收。
2.胆汁排泄:肝肠循环(肠肝循环):药物随胆汁流入肠腔内重新被吸收入血。
3.乳汁排泄:4.其它:唾液、汗腺等。
三、药物代谢动力学的一些概念:(一)药物消除动力学:1. 恒比消除(一级消除动力学):单位时间内消除恒定比例的药物。
药物代谢动力学概念
药物代谢动力学是指药物在体内被代谢的过程,包括药物分子的转化、消除和降解等过程。
药物代谢的速度和途径取决于许多因素,如药物的物理化学性质、剂量、给药方式、个体差异、环境因素等。
药物代谢动力学可以用一些参数和模型描述和评价。
常用的参数包括药物的清除率、半衰期、生物利用度等。
药物清除率是指单位时间内体内药物的消除量,可以反映药物代谢的速度。
药物的半衰期是指药物在体内消除一半所需要的时间,可以反映药物的停留时间。
生物利用度是指经口给药后进入循环系统的药物与静脉给药下,进入循环系统绝对生物利用度的比值,可以反映药物在肠道和肝脏的代谢情况。
药物代谢动力学涉及许多代谢途径,包括氧化、还原、水解、酰基化、硫酸化、葡萄糖醛酸化等。
药物代谢通常发生在肝脏,药物经过肝脏的代谢可以增加药物的溶解度、降低药物的毒性、促进药物的排泄等。
此外,药物代谢还可以受到药物相互作用、遗传因素、疾病状态等的影响。
了解药物代谢动力学对于合理用药和预测药物效果、副作用等具有重要意义。
通过了解药物的代谢规律,可以选择适当的给药途径和剂量,提高疗效,减少不良反应。
药物代谢动力学药物代谢是指身体对药物的吸收、分布、代谢和排泄等过程的总称。
药物在体内的效力和毒性与其代谢过程密切相关。
药物代谢动力学主要研究这些过程的速率、途径和影响因素。
药物吸收和分布药物的吸收和分布是药物代谢的第一步。
药物进入体内,首先会通过口腔、胃肠道或皮肤等方式吸收。
其中,胃肠道是主要吸收途径。
吸收过程一般分为被动扩散、主动转运和被动扭曲等方式。
药物吸收后,会随着血液循环分布到整个身体,但不同药物的分布具有明显差异。
一般来说,与血浆蛋白结合能力低的药物可以更容易地通过血液-脑脊液屏障和胎盘,进入神经组织和胎儿体内。
药物代谢和药物成分药物代谢是安全和有效用药的必要操作。
药物代谢通常指药物在体内发生的化学变化。
在药物代谢过程中,药物会被转化成一些代谢产物。
药物代谢可以分为两类,即生物转化和体内消除。
药物生物转化包括氧化、还原、羟化、脱甲基化、脱乙基化和酰化等反应。
其中,最常见的是药物氧化反应,通过这种反应,药物可以被细胞内的细胞色素P450酶代谢成水溶性代谢产物。
药物体内消除相当于垃圾清理。
药物体内消除是从体内排出药物及其代谢产物的过程。
主要包括肝脏和肾脏的代谢和排泄。
肝脏扮演了药物代谢的主要角色。
药物通过肝脏进行生物转化,并由肾脏或胆汁排出体外。
其中,药物代谢产物很少有活性,从而减轻了药物对身体的毒性。
药物代谢动力学的影响因素药物在体内的吸收、分布、代谢和排泄等过程具有种种影响因素。
考虑到这些因素有助于了解药物代谢动力学。
下面列举了一些主要影响因素:1.个体差异。
个体差异是最常见的影响因素之一,每个人的生理和代谢过程都有可能不同,这也导致了药物的代谢动力学不同。
例如,儿童和老年人的药理学反应与成人不同。
2. 用药途径。
不同的用药途径和方式会对药物吸收和分布产生明显不同的影响。
3.生物利用度。
生物利用度指药物的口服剂量吸收的百分比。
这个值对于药物的效果和毒性有很大的影响。
4.药物代谢速率。
药物代谢速率指药物体内代谢的速度。
药物代谢动力学药物代谢动力学是研究药物在体内的代谢和排泄过程的一门学科,它是药物学中非常重要的一个分支,它可以帮助我们更好地理解药物在人体内的行为,从而更好地使用药物,防止药物的不良反应,并为药物的开发提供理论依据。
药物代谢动力学的主要研究对象是药物在体内的代谢和排泄。
药物有很多来源,它们可以从食物、空气、水、药物等各种渠道进入我们的体内。
因此,药物代谢动力学的研究内容非常广泛和复杂。
药物在体内的代谢和排泄的过程对于药物的疗效、毒性和安全性具有重要的影响。
药物的代谢过程包括三个主要的步骤:吸收、分布和消除。
吸收是指药物吸收到人体内的过程。
分布是指药物在体内经过血液和其他液态组织的输送,从而分布到各个组织和器官的过程。
消除是指药物经过代谢和排泄等过程被从人体内清除的过程。
药物的代谢和排泄主要是由肝脏和肾脏来完成的。
肝脏是人体内最重要的代谢器官,它可以通过氧化、还原和水解等化学反应将药物代谢成不同的代谢产物。
这些代谢产物可能是无活性或具有活性,有时它们可能具有比药物本身更强的效力或毒性。
肾脏则通过尿液排泄药物及它们的代谢产物。
药物代谢的动力学过程是非常复杂的,与许多因素有关。
这些因素包括药物本身的性质、剂量、给药途径、进入通道、药物的代谢酶和其他因素。
药物的代谢动力学不仅对于药物产生了很大的影响,而且对于药物的不良反应也产生了很大的影响。
药物代谢动力学也为药物的开发提供了很好的理论基础。
药物的代谢动力学研究可以帮助药物研发人员更好地理解药物在人体内的行为,从而更好地设计药物,并提高药物疗效和安全性。
不仅如此,药物代谢动力学还有助于药物的个体化治疗,即根据患者个体的代谢剖面来调整药物的剂量和给药方式,以达到更好的临床效果和更少的不良反应。
总之,药物代谢动力学是药物学中重要的一个领域,它研究药物在体内的代谢和排泄过程,对药物的临床治疗和药物的研发都具有重要的作用。
药物代谢动力学的研究不仅有助于我们更好地使用药物,而且有助于我们更好地理解人体的代谢过程。
药物代谢动力学药物代谢动力学是指药物在体内代谢过程中的速率和方式。
了解药物代谢动力学对于合理用药和安全用药非常重要,因为药物代谢的速度直接影响药物在体内的浓度和作用时间。
药物代谢动力学主要包括吸收、分布、代谢和排泄四个过程。
吸收是指药物从给药途径进入体内。
不同的给药途径会影响药物的吸收速度和程度。
例如,通过口服给药的药物首先要经过胃肠道吸收,然后通过肠道壁进入血液循环。
而经皮给药的药物需要通过皮肤屏障进入血液循环。
分布是指药物在体内不同组织和器官间的分布。
药物通过血液循环到达不同的组织和器官,如肝脏、肾脏、肺等,从而产生药物在体内的浓度梯度。
药物的脂溶性、蛋白结合率以及组织的血流量等因素都会影响药物的分布。
代谢是指药物在体内经过化学反应转化为代谢产物的过程。
药物主要在肝脏中进行代谢,但其他组织和器官如肾脏、肠道等也能参与药物代谢。
药物代谢的主要目的是通过改变药物的化学结构来提高其水溶性,使其更容易被排泄出体外。
其中,药物代谢的主要途径包括氧化、还原、水解和酰基转移等。
排泄是指药物从体内排出的过程。
主要通过肾脏、肝脏、肺和肠道四个途径排出。
药物在肾脏中通过肾小球滤过和肾小管分泌和再吸收等过程,经尿液排出体外。
肝脏通过胆汁分泌药物代谢产物,然后经肠道排出。
肺脏通过呼吸作用排出药物气体和挥发性物质。
肠道的排泄主要通过粪便排出。
药物代谢动力学的研究可以通过测定药物在体内的浓度变化来获得。
主要有口服给药后的血浆药物浓度-时间曲线和尿液中的药物代谢产物浓度变化。
通过分析药物在体内的浓度变化可以获得药物的代谢速率(代谢净速度),以及代谢的半衰期、清除率等参数,从而了解药物在体内的代谢过程。
药物代谢动力学的知识对于临床用药具有重要的指导意义。
了解药物的代谢特点可以预测和调整药物的剂量、给药方式和给药时间。
对于肝功能或肾功能受损患者,药物代谢动力学的研究可以帮助调整药物的剂量和给予频率,避免药物在体内积累和毒副作用的发生。
药物动力学和药物代谢动力学药物动力学和药物代谢动力学,听上去好像是科学家们的专利,但其实它们和我们日常生活息息相关。
想象一下,你感冒了,医生给你开了药,你是不是也想知道这个药到底是怎么在你体内工作的?那就让我们从头说起,轻松聊聊这两位科学界的“老朋友”吧。
1. 药物动力学的基本概念1.1 什么是药物动力学?药物动力学,顾名思义,就是研究药物在体内是如何运动的。
想象一下,药物就像一位舞者,走进你的身体,在各个角落跳舞。
它的舞蹈包括几个步骤:吸收、分布、代谢和排泄。
听起来复杂,其实就是药物是怎么进入你体内、在体内传播、被处理和最终被排出去的。
1.2 药物的吸收和分布说到吸收,药物就像一颗颗小水滴,进到你的身体里。
你吃药后,胃肠道就像个热锅上的蚂蚁,忙着把药物吸收到血液里。
不同的药物吸收速度也不一样,有的快得像闪电,有的则慢得像蜗牛。
而一旦药物进了血液,接下来就是分布。
药物就像个快递小哥,奔波在全身各处,有的直奔目标,有的可能在你肚子里晃荡半天。
2. 药物代谢动力学的奥秘2.1 药物的代谢接下来,咱们要说的就是药物的代谢了。
这一过程可以理解为药物在你体内的“美容院”,在这里,药物被“打磨”、被“加工”,最终变得“适合出门”。
代谢主要发生在肝脏,肝脏就像个大工厂,忙着把药物转化成各种代谢产物。
有的药物在这里会变得更活跃,有的则会被“废弃”,准备排出体外。
2.2 药物的排泄说到排泄,那可是个不得不提的环节。
药物的代谢产物最终会通过尿液、汗水、甚至是呼吸排出体外。
你知道吗?有时候,药物的气味也可能通过呼吸释放出来,真是“内外兼修”啊!排泄的速度因人而异,跟你身体的代谢能力、喝水的多少、甚至饮食习惯都有关系。
3. 影响药物动力学的因素3.1 个体差异每个人的身体都是独一无二的,所以药物在你身上的表现可能大相径庭。
有些人可能对某种药物“特效”,而有些人却“毫无感觉”。
这就好比你去参加派对,有的人一杯酒就能嗨到天边,而有的人喝了半天还没感觉到热乎乎的。
药物代谢动力学的名词解释1. 什么是药物代谢动力学?药物代谢动力学,听起来像个高大上的名词,其实就是研究药物在我们身体里怎么被吸收、分布、代谢和排泄的一门科学。
简单来说,就是药物在我们身体里的“旅行路线图”。
你想象一下,吃了药后,这药就像一位小旅客,得经过好多地方,最后才能走出体外。
想要搞懂药物对身体的影响,这个学科简直是必不可少的!1.1 药物的吸收首先,咱们得说说药物的吸收。
你吃药后,它可不是立马就发挥作用的,而是需要时间在肠道里被吸收。
这就像你在超市里买东西,得排队付款,才能拿到你心爱的商品。
有些药物通过口服进入体内,有些则是打针、喷雾或者贴片,这些方式都影响着药物的吸收效率。
要是吃了个药,但吸收得慢,那你就等着吧,效果可得等一等。
不过,有时候也会有特例,比如那些能迅速进入血液的药物,简直是直通车,让你快点儿见效。
1.2 药物的分布接下来,药物吸收完了,就要分布了。
想象一下,药物在血液里就像小船在河流里漂,得去到各个需要的地方。
有些药物可能喜欢待在特定的器官,比如肝脏、肺部或大脑,而有些则四处游荡。
这个分布过程受好多因素影响,包括血液流动、药物的脂溶性、蛋白结合等等。
这就像每个小船都有自己的航行偏好,有些走得快,有些走得慢,最终目的地各不相同。
2. 药物的代谢说完了吸收和分布,接下来的大戏就是药物的代谢。
其实,代谢就像给药物进行了一场“整容手术”,让它变得更容易被身体处理。
有些药物经过肝脏代谢,变得更小,变得更温柔,最终准备好被排出体外。
这个过程真是妙不可言,像是把大块头的药物切割成小块,方便“快递”走人。
代谢的速度和效率也受个人身体状况、年龄、性别等多种因素影响,像个变幻莫测的天气,让人难以捉摸。
2.1 药物的排泄最后,我们得谈谈药物的排泄。
排泄就像把药物送回家,一般通过尿液、汗水、唾液等方式离开身体。
想象一下,药物在体内住了一段时间,终于可以打包回家,这种感觉绝对爽快!不过,有些药物可能在体内逗留的时间比较长,这就有点让人担心了,因为它们可能会导致不必要的副作用。
第三章药物代谢动力学药物代谢动力学(pharmacokinetics,PK)简称药代动力学或药动学,是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化规律的科学。
体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。
吸收、分布、排泄通称药物转运(tranportation of drug)。
代谢也称生物转化(biotransformation)。
代谢和排泄合称为消除(elimination)。
图3-1 药物体内过程示意图第一节药物的跨膜转运生物膜:生物膜是细胞膜和细胞内各种细胞器膜(如核膜、线粒体膜、内质网膜和溶酶体膜等)的总称。
一、转运方式(一)被动转运(passive transport)1.脂溶扩散(lipid diffusion;简单扩散,simple diffusion)2.水溶扩散(aqueous diffusion;滤过,filtration through pores)3.易化扩散(facilitated diffusion)(需转运体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;无饱和、竞争抑制。
(二)主动转运(active transport)1.膜泵转运(pump transport)特点:逆差(浓度、电位),耗能;需转运体,有饱和、竞争抑制。
2.膜动转运(cytopsis transport)(1)胞饮(pinocytosis)(2)胞吐(exocytosis)图3-2 药物转运方式示意图二、药物转运体易化扩散和膜泵转运均需要依赖生物膜上的载体介导,这些载体即药物转运体(drug transporter;药物转运蛋白)。
药物转运体分布广泛,影响药物体内过程的各个环节,进而影响药理活性。
药物转运是药物在体内跨越生物膜的过程。
药物代谢动力学(pharmacokinetics)简称药代动学或药动学,主要是定量研究药物在生物体内的过程(吸收、分布、代谢和排泄),并运用数学原理和方法阐述药物在机体内的动态规律的一门学科。
确定药物的给药剂量和间隔时间的依据,是该药在它的作用部位能否达到安全有效的浓度。
药物在作用部位的浓度受药物体内过程的影响而动态变化。
在创新药物研制过程中,药物代谢动力学研究与药效学研究、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究的重要组成部分。
包括药物消除动力学:一级消除动力学(单位时间内消除的药量与血浆药物浓度成正比,又叫恒比消除)和零级消除动力学(单位时间内体内药物按照恒定的量消除,又叫恒量消除)药物代谢动力学的重要参数:1、药物清除半衰期(half life,t1/2),是血浆药物浓度下降一半所需要的时间。
其长短可反映体内药物消除速度。
2、清除率(clearance,CL),是机体清除器官在单位时间内清除药物的血浆容积,即单位时间内有多少体积的血浆中所含药物被机体清除。
使体内肝脏、肾脏和其他所有消除器官清除药物的总和。
3、表观分布容积(apparent volume of distribution,V d),是指当血浆和组织内药物分布达到平衡后,体内药物按此时的血浆药物浓度在体内分布时所需的体液容积。
4、生物利用度(bioavailability,F),即药物经血管外途径给药后吸收进入全身血液循环药物的相对量。
可分为绝对生物利用度和相对生物利用度。
体内过程即药物被吸收进入机体到最后被机体排出的全部历程,包括吸收、分布、代谢和排泄等过程。
其中吸收、分布和排泄属物理变化称为转运。
代谢属于化学变化亦称转化。
机体对药物作用的过程,表现为体内药物浓度随时间变化的规律。
药物动力学是研究药物体内过程规律,特别是研究血药浓度随时间而变化的规律。
1.吸收(absorption)药物从给药部位进入血液循环的过程称为吸收。
影响吸收的因素主要有:1、给药途径:吸收速度:吸入>舌下>肌注>皮下>直肠>口服>皮肤。
2、药物性质:(1)脂溶性:脂溶性越大,吸收越快;(2)水溶性:易溶于水的药物易吸收;(3)离解度:不解离部分脂溶性较大,易吸收;而解离部分,由于带有极性,脂溶性低,难以吸收。
口服药物被吸收进入体循环的比率,即给药量与吸收量的比率称为生物利用度(或生物可用度)。
2.分布(distribution)药物吸收后从血液循环到达机体各个器官和组织的过程称为分布。
影响药物分布的主要因素有:1、药物的性质:脂溶性大分布到组织器官的速度快。
2、药物与组织的亲和力:有些药物对某些组织器官有特殊的亲和力。
药物对组织器官的亲和力与疗效及不良反应有关。
3、药物与血浆蛋白(主要是白蛋白)结合率:结合率大小与疗效有关。
结合后:(1)无活性;(2)不易透过毛细血管壁,影响分布和作用;(3)结合型药物分子量大,不易从肾小球滤过,也不受生物转化的影响;因此在体内的作用时间也延长。
4、血流量大小:脑、心肝、肾等组织器官血管丰富,血流量大,药物浓度较高,有利于发挥作用,也易引起这些组织器官损害。
5、特殊屏障:血脑屏障是血液与脑组织之间的屏障,极性小而脂溶性大的药物较易通过,对极性大而脂溶性小的药物则难以通过。
3.代谢(metabolism,或生物转化biotransformation)药物作为外源性物质在体内经酶或其它作用使药物的化学结构发生改变,这一过程称为代谢(或生物转化)。
药物代谢的主要器官是肝脏。
也可发生在血浆、肾、肺、肠及胎盘。
4.排泄(excretion)排泄是药物以原形或代谢产物的形式经不同途径排出体外的过程,是药物体内消除的重要组成部分。
主要通过肾脏。
此外还有肺、胆汁、乳汁、唾液腺、支气管腺、汗腺、肠道等。
药物剂量的设计和优化靶浓度合理的给药方案是使稳态血浆药物浓度(Css)达到一个有效而不产生毒性反应的治疗浓度范围,称为靶浓度(target concentration)。
维持量在大多数情况下,临床多采用多次间歇给药或是持续静脉滴注,以使稳态血浆药物浓度维持在靶浓度。
因此要计算药物维持剂量(maintenance dose)负荷量t1/2才能达到稳态血药浓度,增加剂量或者缩短给药间隔时间均不能提前达到稳态,只能提高药物浓度,因此如果患者急需达到稳态血药浓度以迅速控制病情时,可用负荷量(loadingdose)给药法。
负荷量是指首次剂量加大,然后再给予维持剂量,使稳态血药浓度(即事先为该患者设定的靶浓度)提前产生。
个体化治疗速率过程(一)、药物浓度―时间曲线:给药后药物浓度随时间迁移发生变化为纵坐标,以时间为横坐标绘制曲线图,称为药物浓度―时间曲线(见图)。
由于血液是药物及其代谢物在体内吸收、分布代谢和排泄的媒介,各种体液和组织中的药物浓度与血液中的药物浓度保持一定的比例关系,而有些体液采集较困难,所以血药浓度变化最具有代表性,是最常用的样本,其次是尿液和唾液。
(二)、消除速率类型:1、一级速率消除:单位时间内体内药物浓度按恒定比例消除。
计算公式为:dC/dt ﹦―KC2、零级速率消除:单位时间内体内药物浓度按恒定的量消除。
计算公式为:dC/dt ﹦―KoC°dC/dt ﹦―Ko3、混合速率消除:少部分药物小剂量时以一级速率转运,而在大剂量时以零级速率转运。
因此描述这类药物的消除速率需要将两种速率类型结合起来,通常以米﹣曼氏方程式描述。
(三)、药动学模型:房室模型是药动学研究中广为采用的模型之一,由一个或数个房室组成,一个是中央室,其余是周边室。
这种模型是一种抽象的表达方式,并非指机体中的某一个器官或组织。
(四)、药动学参数计算及意义:1、峰浓度和达峰时间:指血管外给药后药物在血浆中的最高浓度值及其出现时间,分别代表药物吸收的程度和速度。
2、曲线下面积:指时量曲线和横坐标围成的区域,表示一段时间内药物在血浆中的相对累积量。
3、生物利用度:药物经血管外给药后能被吸收进入体循环的分量及速度。
4、生物等效性:比较同一种药物的相同或者不同剂型,在相同试验条件下,其活性成分吸收程度和速度是否接近或等同。
5、表观分布容积:指理论上药物均有分布应占有的体液容积。
6、消除速率常数:指单位时间内消除药物的分数。
7、半衰期:指血浆中药物浓度下降一半所需要的时间。
8、清除率:指单位时间内多数毫升血浆中的药物被清除。
药物在体内的分布非常复杂,不同的脏器和组织分布不同,同一脏器或组织在不同的时间分布亦不同,想完全搞清药物在体内的分布非常困难,甚至是不可能的。
但了解药物的体内分布对于理解药物的体内过程,进而理解药物的效应有重要意义,因此人们还是在想方设法了解药物的分布状况。
为此引入了表观分布容积(Vd)的概念,它是将血液药物浓度与体内总药量联系起来的比例常数,是一个抽象概念。
这个概念虽然不很准确,但可大致反映药物的体内分布状况。
表观分布容积(apparent volume of distribution, Vd)是指当药物在体内达动态平衡后,体内药量与血药浓度之比值称为表观分布容积。
一般认为,药物进入体内后迅速达到平衡。
从血浆或其他生物隔室中取样并分析药物含量,一般都以浓度而非含量为单位。
由于药物和各组织的亲和力不同,体内各组织的药物浓度可能不同。
可以将给定区域的药量与浓度建立比例关系,其比例常数是溶解药物液体的体积。
分布容积代表一个体积,用它可从取样隔室中得到血药浓度计算体内的药量。
分布容积就是溶解药物的体液的表观容积。
由于分布容积值在解剖学上没有确切的生理意义,故要用“表观”二字。
体内药量不是直接测得的,而是在固定时间段内取血并分析其血药浓度得到的,用表观分布容积建立血药浓度和体内药量的关系,即体内药量=表观分布容积*血药浓度。
表观分布容积不是真实意义的生理容积。
大多数药物的表观分布容积都小于或等于身体容积。
有些药物的分布容积可能是体积容积的几倍。
表观分布容积是关于血浆浓度和体内药量的有用参数。
在血管外分布多的药物,其表观分布容积一般较大,而低脂溶性的极性药物表观分布容积小,与外周组织高度结合药物的表观分布容积也大。
表观分布容积主要依赖于药物在血浆或组织中的的蛋白结合以及体液总量。
肾脏损伤肯能该表人体的体液平衡,药物蛋白结合率或其他可能造成表观分布容积改变的因素,从而改变药物的分布。
1.分布容积的条件和意义假设药物在体内充分分布后,各器官(组织)中的药物浓度到达平衡的前提下,体内的全部药物按血液中同样浓度分布所需的总容积(单位L,L/kg),称为Vd[1]。
成人的血液、组织液、细胞内液分别约占体重的7%~8%、15%和40%。
根据分布容积可大致估计药物在体内的分布情况。
如 Vd 在0.05 L/kg左右时表示药物大部分分布于血浆; Vd>0.6 L/kg则表示药物分布到组织器官中; Vd>1 L/kg则表示药物集中分布至某个器官内或大范围组织内。
这个概念有两个关键点:分布平衡和血药浓度。
2. 分布容积的计算当药物静脉注射后,先集中在血管内,再向血管外的器官组织转移,此过程称为分布。
从血药浓度-时间曲线可见血药浓度快速下降,即分布相。
假定药物在体内不消除,则分布平衡后血药浓度维持在一个稳定的水平C(图1A)。
由于体内的药物没有消除,其总量(注射量D)不会发生变化,则Vd = D/C。
但是,体内的药物必然是要消除的。
当药物静脉注射后,在血药浓度-时间曲线上先出现一个快速下降的曲线,即分布相α(图1B)。
当分布达到平衡后,血药浓度的变化仅反映药物的消除。
大多数药物按照一级动力学消除,即血药浓度的对数与时间成反比。
在血药浓度-时间曲线上表现为消除相β。
消除相在Y 轴上的截距B则是注射后0时药物分布平衡时的血药浓度,此时体内的药量即为注射量D[2],则Vd = D/B。
体内任一时刻的药物总量也可根据药物的半衰期求得,其与该时刻血药浓度的商,即为分布容积。
Vd可用L/kg体重表示。
Vd=给药量*生物利用度/血浆药物浓度Vd是一个假想的容积,它不代表体内具体的生理性容积。
但从Vd可以反映药物分布的广泛程度或与组织中大分子的结合程度。
Vd≈5L 表示药物大部分分布于血浆Vd≈10~20L 表示药物分布于细胞外液Vd≈40L 表示药物分布于全身体液Vd >100L 表示药物集中分布至某个组织器官或大范围组织内Vd越小,药物排泄越快,在体内存留时间越短;分布容积越大,药物排泄越慢,在体内存留时间越长。
按照血浆浓度(c)推算体内外来化合物总量(A)在理论上应占有的体液容积,即表观分布容积Vd=A/c,单位为mL或mL/kg(体重)。
各组织器官与血浆对外来化合物浓度的影响,因此表观分布容积能提供外来化合物在体内分布的重要信息。