第2章焊接化学冶金汇总
- 格式:ppt
- 大小:228.00 KB
- 文档页数:2
焊接冶金原理知识点总结一、焊接的概念和分类1. 焊接的概念焊接是利用热或压力,或两者的联合作用,在接头表面形成一层永久性连接的材料,使毗邻金属连接,在一定程度上具有熔融结合或压力结合作用,从而使接头处的材料成为一个整体的金属连接工艺。
2. 焊接的分类(1)按焊接方式分类:手工焊、气体保护焊、电弧焊、搅拌摩擦焊、激光焊等;(2)按焊接材料分类:金属焊接、非金属焊接、金属与非金属焊接等;(3)按焊接方法分类:熔化焊接和压力焊接;(4)按焊接环境分类:气氛焊、真空焊等。
二、熔化焊接的冶金原理1. 熔化焊接的工艺熔化焊接是利用焊条、焊丝或焊粉,在熔化的金属表面形成永久连接的工艺。
通常分为气焊、电弧焊、氩弧焊和激光焊等。
2. 熔化焊接的冶金原理(1)熔化焊接中金属熔池的形成:熔化焊接时,焊接热能使金属焊件熔化,产生熔池;(2)熔化焊接中金属熔池的流动:在熔池形成后,金属熔池受到表面张力的影响,会形成流动;(3)熔化焊接中金属熔池的凝固:熔化焊接过程中,金属熔池冷却,从而形成焊缝。
三、压力焊接的冶金原理1. 压力焊接的工艺压力焊接是在金属材料表面施加压力,使得其表面产生剪切位移,从而实现永久连接的工艺。
2. 压力焊接的冶金原理(1)压力焊接中金属材料的塑性变形:在压力作用下,金属材料表面发生塑性变形;(2)压力焊接中金属材料的分子力作用:在压力作用下,金属材料表面分子间产生相互吸引,并使得金属材料形成永久连接;(3)压力焊接中金属材料的冷却:压力焊接过程中,金属材料冷却,并形成焊缝。
四、焊接质量控制1. 焊接质量的检测方法(1)焊缝外观检查:检查焊缝表面是否有裂纹、气孔、夹渣等缺陷;(2)X射线检测:用X射线透射技术检查焊接接头内部是否有气孔、夹渣、非金属夹杂等;(3)超声波探伤:利用超声波穿透焊缝进行波阵面扫描,检测焊缝内部是否有夹杂、裂纹等;(4)磁粉探伤:在焊缝表面施加可磁化的粉末,然后利用磁粉检测设备检测焊缝是否有裂纹等。
焊接化学冶金知识概述1. 焊接的定义焊接是一种通过加热和熔化填充材料来连接金属或非金属的工艺。
焊接常用于工业制造、建筑结构、航空航天和汽车等领域。
2. 焊接的基本原理焊接的基本原理是利用热能将工件加热到熔点或熔化状态,然后通过填充材料或者使工件之间发生扩散、合金化等方式实现连接。
3. 焊接的分类3.1 按焊接方式分类•熔化焊:包括气体焊、电弧焊、激光焊等。
•压力焊:如冷压焊和高频电磁铁焊等。
•固态焊接:如超声波焊接、摩擦焊接等。
3.2 按焊接材料分类•金属焊接:主要包括钢铁焊接、铝及其合金焊接等。
•非金属焊接:如塑料焊接、陶瓷焊接等。
4. 焊接过程中的化学反应焊接过程中常涉及几种重要的化学反应,包括氧化反应、还原反应和合金化反应。
4.1 氧化反应在焊接过程中,工件与氧气接触会导致氧化反应的发生。
氧化反应会产生氧化物,降低焊接接头的质量和强度。
因此,焊接过程中需要采取控制氧气的措施,如铜嘴焊接时采用保护气体。
4.2 还原反应焊接过程中,一些还原剂可以用来减少氧化反应,并将金属离子还原为金属形态。
常用的还原剂包括草酸、亚硫酸盐等。
这些还原剂可以在焊接过程中加入填充材料或采用保护气体形式。
4.3 合金化反应合金化反应是指在焊接过程中,工件之间发生化学反应,形成新的金属合金。
这种合金化反应可以增强焊接接头的强度和耐腐蚀性能。
5. 焊接中的冶金知识焊接冶金是焊接中重要的一部分,它涉及到金属的物理性质、热力学和组织变化等方面。
5.1 金属物理性质焊接过程中,金属的物理性质如导热性、熔点、膨胀系数等都会对焊接产生影响。
了解金属的物理性质有助于选择适合的焊接方法和工艺参数。
5.2 金属热力学热力学是研究能量转化和系统平衡的科学。
在焊接过程中,热力学的知识可以用来预测金属的相变行为、溶解度等。
这对于选择合适的焊接材料和研究焊接接头的稳定性非常重要。
5.3 组织变化焊接过程中,金属的组织会发生变化,这对焊接接头的性能有巨大影响。
焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
表示方法:等温线或者等温面。
特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。
影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;<热导率,比热容容积比热容,热扩散率,热焓,表面散热系数>;(4)焊件的板厚和形状。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
9)焊接热传递的三种形式:传导、对流和辐射。
由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。
10)焊接线能量:热源功率q与焊接速度v的比值。
热输入:在单位时间内,在单位长度上输入的热能。
第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
焊接冶金知识点总结-精简版第一篇:焊接冶金知识点总结 - 精简版8.综合分析熔渣中的CaF2在焊接化学冶金中所起的作用?造渣。
药皮中的CaF2高温可分解出氟,或者与水玻璃等化合物形成NaF、KF,再与含氢物质形成不溶于金属的HF。
这样就使焊缝中的含氢量极低。
所获得焊缝金属的塑性、韧性好,具有良好的抗裂性,使用于焊接搁置那个重要的焊接结构和大多数的合金钢。
在碱性渣中加入CaF2,能促使CaO的熔化,固可降低非均相碱性渣的粘度。
CaF2还能降低酸--性渣的粘度。
因为CaF2在渣中产生F,而F能破坏Si-O键减小其尺寸。
10.产生层状偏析的原因:熔池金属结晶时,在结晶前沿的液体金属中,溶质的浓度较高,同时也富集了一些杂质。
当冷却速度较慢时,这一层浓度较高的溶质和杂质可以通过扩散而减轻偏析的程度。
但冷却速度很快时,还没来得及“均匀化”就已凝固,造成了溶质和杂质较多的结晶层。
由于结晶过程放出结晶潜热和熔滴过渡时热能输入周期性变化,致使凝固界面的液体金属成分也发生周期性的变化。
所以,产生层状偏析的原因是由于热的周期性作用而引起的。
12.有他们充分溶解在奥氏体的内部,才会增加奥氏体的稳定性。
很显然在热处理的条件下,可以有充分的时间溶解。
而在焊接条件下,由于加热速度快,高位停留时间短,所以不能充分溶解,因此降低了脆硬倾向,至于不含碳化和元素的钢,一方面不存在碳化合物溶解过程,另一方面,在焊接条件下,由于焊缝区组织粗化,固脆硬倾向比热处理条件下要大。
一般来讲,晶粒越粗,则淬硬性转变温度越高,也就是淬硬性增加。
13.b进行消除应力的处理之前焊接区存在较大的残余应力并有不同程度的应力集中;c产生热裂纹存在一个最敏感的温度区间;d含有一定沉淀强化元素的金属材料才具有产生再热裂纹的敏感性。
16.S.P对焊接质量的影响,如何控制?S:硫的危害:在熔池凝固时它容易发生偏析,在低熔点共晶的形式呈片状或链状分布于晶(1)限制焊接材料中的含硫量(2)用冶金方法脱硫P磷的危害:在熔池快速凝固时,磷易发生偏析。