第三章焊接过程中的冶金反应原理
- 格式:ppt
- 大小:7.93 MB
- 文档页数:46
绪论一、焊接过程的物理本质1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
表示方法:等温线或者等温面。
特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。
影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;<热导率,比热容容积比热容,热扩散率,热焓,表面散热系数>;(4)焊件的板厚和形状。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
9)焊接热传递的三种形式:传导、对流和辐射。
由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。
10)焊接线能量:热源功率q与焊接速度v的比值。
热输入:在单位时间内,在单位长度上输入的热能。
第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
焊接冶金反应焊接是一种通过熔化金属材料并在固化后形成连接的工艺。
在焊接过程中,金属材料的冶金反应起着重要的作用。
冶金反应是指在焊接过程中,金属材料发生的物理和化学变化。
本文将探讨焊接冶金反应的原理和影响因素。
焊接冶金反应的原理与金属的熔化和凝固有关。
在焊接过程中,焊接电弧或激光束的热作用下,金属材料被加热至熔点以上,形成熔池。
在熔池中,金属原子发生扩散和重新排列,形成新的晶粒结构。
当熔池冷却凝固后,晶粒之间形成了焊缝。
焊接冶金反应的影响因素主要包括焊接材料、焊接工艺和环境条件等。
首先是焊接材料的选择。
不同种类的金属材料在焊接过程中会发生不同的冶金反应。
例如,钢材焊接时,会发生固溶体形成、相变和析出等反应。
而铝合金焊接时,会发生氧化和溶解等反应。
因此,在选择焊接材料时,需要考虑其冶金反应特性。
其次是焊接工艺的影响。
焊接工艺包括焊接电流、焊接速度、焊接温度等参数的选择。
这些参数的不同组合将导致不同的冶金反应发生。
例如,在焊接过程中,提高焊接电流和焊接速度会增加熔池的温度和深度,从而影响冶金反应的进行。
因此,在进行焊接工艺设计时,需要考虑冶金反应的影响。
最后是环境条件的影响。
焊接过程中的环境条件,如气氛、湿度等,也会对冶金反应产生影响。
例如,在氧气环境中,金属材料容易氧化,影响焊接质量。
因此,在焊接过程中,需要控制好环境条件,以保证冶金反应的进行。
总结起来,焊接冶金反应是焊接过程中金属材料发生的物理和化学变化。
冶金反应的原理与金属的熔化和凝固有关,而影响因素主要包括焊接材料、焊接工艺和环境条件等。
了解焊接冶金反应的原理和影响因素,可以帮助我们更好地进行焊接工艺设计和质量控制,提高焊接连接的强度和可靠性。
第三章铝热反应原理铝热焊是基于铝热反应放出的化学热进行的焊接过程。
同时,在高温条件下,铝热焊还会伴随多种反应,化学反应的热力学决定了反应是否具备进行的基本条件,即反应是自动进行,还是需要某种条件。
冶金热力学的研究对象自然是冶金过程赖以存在的冶金化学变化,物理变化和相变化。
所谓冶金化学反应平衡指的是两项相对独立而又相互联系的内容:在一定条件下反应能否按预定方向自动进行;若能自动进行,则能进行到什么程度或限度.概括起来就是方向和限度问题在冶金中能量平衡—般表现为热平衡,其基本根据是冶金化学变化,物理变化和相变化中的能量效应,例如放热和吸热在此基础上建立了冶金反应和单元冶金过程的理沦热平衡.从而可计算放热反应( 包括燃烧) 的最高温度,吸热反应所必需的供热量以及为单元冶金过程的热制度提供依据.动力学的基本任务是研究各种因素(诸如温度、压力、浓度、介质、催化剂)对反应速率的影响,以揭示化学反应与物质结构之间的关系,达到控制化学反应的目的。
第一节铝热反应的热力学原理一热力学第一定律对宏观体系而言,热力学第一定律就是能量守恒原理。
热力学第一定律是能量守恒与转化定律在热现象领域内所具有的特殊形式。
通常表述为“能量有各种不同的形式,能够从一种形式转化为另一种形式,从一个物体传递给另一个1物体,而在转化与传递中能量的总数量总是保持不变。
”二热力学第一定律的数学表达式与焓1.内能内能是蕴藏于体系内部的能量,是指体系内分子运动的动能,分子间相互作用的位能,以及原子、电子的运动能和核能的总和。
它不包括整个体系的动能以及体系在外力场中的位能。
用符号表示为U。
内能是状态的函数。
体系从状态 A 变到状态B,可能有多种路径,但从不同的路径进行变化,最终的内能增量⊿U 是一致的。
2.数学表达式用数学公式表达,热力学第一定律可以表示为:⊿U=q-W其物理意义是:体系所吸收的热量q 减去对环境所作功W,等于内能的增量⊿U。
3.焓当化学反应、相变过程和变温过程是在等压下进行的(通常是一大气压),如果体系除体积功外不作其它功,则有:⊿U=q p-P 外(V2-V 1)由于等压过程中P外= P2-P1所以有U2-U1= q p-(P2V2-P1V1)整理后变为:(U2+P2V2)-(U1+P1V1)= q p (2-1)由于U 和PV 都是由状态决定的,显然它的变化值[(U2+P2V2)-(U1+P1V1)]也由体系的始、终态决定而与途径无关。
焊接化学冶金过程嘿,咱今儿就来唠唠焊接化学冶金过程。
你说这焊接,就好像是一场奇妙的化学反应大冒险!想象一下,那焊接的地方就像是一个小小的舞台,各种元素和物质在这儿粉墨登场,开始它们的表演。
金属材料就像是主角,而其他的比如焊条、焊丝啥的,那就是配角啦。
当焊接开始,就像是一场热闹的派对开场。
热量来了,温度升高,一切都变得活跃起来。
金属开始熔化,就像冰淇淋在太阳下慢慢变软、流淌。
这时候,那些配角们也开始发挥作用啦,它们带来了各种不同的化学成分,和熔化的金属一起,开始了奇妙的融合。
这不就跟咱做饭似的嘛,各种食材放在一起,经过烹饪,就变成了美味的菜肴。
焊接化学冶金过程也是这样,不同的成分相互作用,产生出全新的物质和性能。
比如说,焊接过程中会发生一系列的化学反应,就像变魔术一样,产生出一些新的化合物。
这些化合物有的能让焊接部位更坚固,有的能提高它的耐腐蚀性。
而且啊,这焊接化学冶金过程还得注意火候呢!火候不够,那可不行,焊接不牢固;火候太过,又可能会破坏材料的性能。
这就跟咱炒菜一样,火大了菜就糊了,火小了又炒不熟。
还有啊,不同的焊接方法,就像是不同的烹饪方式,会带来不同的效果。
气焊就像是小火慢炖,慢悠悠的但很精细;电焊呢,就像是大火爆炒,速度快但也得掌握好力度。
在这个过程中,我们可得像个细心的大厨一样,时刻关注着每一个细节。
温度啦、化学成分啦、焊接速度啦,都得把握得恰到好处。
不然,这焊接出来的东西可就不达标啦。
总之呢,焊接化学冶金过程那可真是充满了神奇和奥秘。
它让金属材料变得更强大,让我们的生活变得更美好。
下次你再看到那些焊接的地方,可别小瞧了它们,那里面可是有着一场精彩的化学大戏在不断上演呢!这焊接化学冶金过程,不就是科技和工艺的完美结合吗?它让不可能变成可能,让普通变得非凡,难道不是很了不起吗?。
绪论一、焊接过程的物理本质1。
焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2。
怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触.2)对被焊材料加热(局部或整体)对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2) 化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3) 电阻热:利用电流通过导体时产生的电阻热作为热源。
4) 高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接.如高频焊管等。
5) 摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接.7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8) 激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
冶金的原理
冶金的原理是通过物质的熔炼和热处理等工艺,将金属矿石中的金属元素提取出来,并通过改变其化学成分和物理性质,进而获得所需的金属材料。
冶金的主要原理包括矿石选别、矿石还原和提纯、金属合金化以及热处理等过程。
首先,矿石选别是根据矿石的成分和质量特点将其分离和分类处理,以提取目标金属。
其次,矿石还原和提纯是通过化学反应、物理分离等方法,将金属元素从矿石中分离出来,减少杂质含量,达到提纯的目的。
提取的金属元素常常需要进行合金化处理,即将其与其他金属或非金属元素混合,以改善金属的性能和机械性能,使其适应不同的工艺要求。
合金的形成常常需要控制合金元素的比例和添加方式,以达到所需的物理和化学性能。
最后,热处理在冶金工艺中起到重要的作用,通过控制金属材料的加热和冷却过程,改变其晶粒结构和组织,从而调整材料的力学性能(如硬度、韧性等)和组织性能(如晶粒大小、相变等)。
综上所述,冶金的原理涉及矿石选别、还原和提纯、金属合金化以及热处理等过程,旨在提取金属元素、改善其性能和实现特定的结构。
通过这些原理,可以生产出各种不同的金属材料,广泛应用于工业制造、建筑、交通运输、电子等领域。
提⾼焊缝质量的措施焊接从母材和焊条熔化到熔池的形成、停留、结晶,其过程发⽣了许多的冶⾦化学反应,这样就影响了焊缝的化学成分、组织、⼒学性能(强度、硬度、韧性和疲劳极限)、物理和化学性能,因此,焊缝的质量好坏关系到焊件的质量好坏,会影响到焊件的使⽤性能。
所以我们应该对如何提⾼焊缝的质量进⾏分析。
⼀、熔焊冶⾦机理1、氧化熔池的体积很⼩,受电弧加热升温很快,温度可达2000℃或更⾼。
在⾼温下氧⽓发⽣分解,成为氧原⼦,这样,其化学性质⾮常活泼,容易与⾦属和碳发⽣氧化反应,形成⼤量的⾦属氧化物和⾮⾦属氧化物,反应⽅程式如下:Fe O = FeO Mn O = MnOSi 2O = SiO2 2Cr 3O = Cr2O3C O = CO这样,Fe、Mn、Si、C等元素⼤量烧损,使焊缝⾦属含氧量增加,焊缝⼒学性能⼤⼤下降(如低温冲击韧性明显下降,引起冷脆,使得焊件在低温条件下的安全性降低)。
当焊缝凝固冷却后,FeO转变为Fe3O4,它使焊缝⾦属的屈服极限、冲击韧度、疲劳极限。
SiO2、MnO如果没有充⾜的时间上浮,则成为夹杂物。
CO如果没有析出,则成为焊缝中⽓孔。
这些夹杂物和⽓孔都会降低焊缝的性能。
焊接⾼碳钢和铸铁时容易发⽣CO⽓孔;焊接灰⼝铸铁时,由于碳、硅的烧损,冷却快,焊缝会成为硬脆的⽩⼝组织。
2、熔池吸⽓(1)吸氮。
由于受到⾼温的影响,氮⽓也要发⽣分解,形成氮原⼦,溶于液态⾦属中,在冷却过程中要发⽣相变(奥⽒体转变为铁素体),氮在固溶体中的溶解度发⽣突降,最后以Fe4N析出,由于Fe4N呈⽚状夹杂物,虽然使得焊缝⾦属的硬度增⾼,但塑性下降。
(2)吸氢。
焊接接头表⾯附着的油、铁锈所含⽔分、焊条药⽪中配⽤的有机物等,经⾼温分解产⽣氢,氢以原⼦的形式被液态⾦属所吸收。
当温度降低时,过饱和的氢将从液态⾦属中析出,成为⽓孔。
当焊缝凝固⾄室温时,过饱和氢原⼦扩散到微孔中结合成氢分⼦。
在微孔中氢的压⼒逐渐增⼤,使焊缝产⽣裂纹。