流体力学第三章习题讲解
- 格式:ppt
- 大小:578.50 KB
- 文档页数:9
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+=3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=Ax ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw yv xu yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 20200max 2020214222111000u r r r r u dr r r r r u rdrdr r u r udA r V r rAr =⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
第三章 流体动力学基础3-1 已知速度场为k z x j y x i y x u)()()(2-+-++= (m/s),求(2,3,1)点的速度和加速度。
已已知知::z x u y x u y x u -=-=+=z y x )(2,, 解析:(1) (2,3,1)点的速度为m/s 1m/s 1m/s 10)(2z y x =-=-=-==+=z x u y x u y x u ,, s /m 10.101)1(102222z 2y 2x =+-+=++=u u u u (2) (2,3,1)点的加速度为2x z x y x x x x m/s 1832262602)(2)(20=⨯+⨯=+=+⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zuu y u u x u u u a τ2y zy yy xy y m/s 1133230)1()(1)(20=⨯+=+=+-⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zu u yu u xu u u a τ2z z z y z x z z m/s 913222)1()(01)(20=+⨯+=++=-⨯-++⨯++=∂∂+∂∂+∂∂+∂∂=z y x z x y x zu u y u u x u u u a τ22222z 2y 2x s /m 93.2291118=++=++=a a a a3-2 已知速度场为k z y j y i x u )34()(2)3(2-+-++=ττ (m/s),求τ=2秒时,位于(2,2,1)点的速度和加速度。
已已知知::z y u y u x u )34()(23z 2y x -=-=+=,,ττ解析:(1) τ=2秒、位于(2,2,1)点的速度为m/s 5)34(m/s 4)(2m/s 83z 2y x =-=-=-==+=z y u y u x u ,,ττ s /m 25.105)4(82222z 2y 2x =+-+=++=u u u u (2) τ=2秒、位于(2,2,1)点的加速度为2x z x y x x x x m/s 251)223(31)3(3003)3(1=++⨯⨯=++=++⨯++=∂∂+∂∂+∂∂+∂∂=τττx x zuu y u u x u u u a2222y zy yy xy y m/s 342)22(282)(80)4()(202=+-⨯⨯=+-=+-⨯-++=∂∂+∂∂+∂∂+∂∂=τττy y y y zu u yu u xu u u a2222222z z z y z x z z m/s 91)324()22(18)34()(8)34(4)(200=⨯-⨯+-⨯⨯=-+-=-+⨯-++=∂∂+∂∂+∂∂+∂∂=z y y z zy z y zuu y u u x u u u a τττ22222z 2y 2x s /m 15.4393425=++=++=a a a a3-3 已知二维流场的速度分布为j x y i x y uττ)96()64(-+-= (m/s)。
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。
设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。
吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。
(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰ 2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydz J dadbdc a b c ∂==∂(雅可比行列式),于是()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。
单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以 r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以 e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ 和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v tr r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。