第三章药物结构和代谢.
- 格式:ppt
- 大小:301.50 KB
- 文档页数:30
药物的体内过程集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]第三章药物代谢动力学(药动学)药动学(pharmacokinetics)是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化的规律的科学。
第一节药物体内过程体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。
吸收、分布、排泄通称药物转运(tranportationofdrug)。
代谢变化也称生物转化(biotransformation)。
代谢和排泄合称为消除(elimination)图3-1药物体内过程示意图一、药物的跨膜转运1.被动转运(passivetransport)类型:1)脂溶扩散(lipiddiffusion;简单扩散)2)水溶扩散(aqueousdiffusion;滤过)3)易化扩散(facilitateddiffusion)(需载体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;不需载体,无饱和、竞争抑制。
2.主动转运(activetransport)特点:逆差(浓度、电位),耗能;需载体,有饱和、竞争抑制。
3.膜动转运(cytopsistransport)胞饮(pinocytosis)胞吐(exocytosis)整个体内过程都涉及药物体内跨膜转运。
大多数药物体内转运过程属于被动转运(脂溶扩散)。
分子量小,非解离型,脂溶性大,极性小的药物易被动转运。
二、吸收药物从给药部位进入血液循环的过程称为吸收。
吸收速度主要影响药物起效的快慢;吸收程度主要影响药物作用的强弱。
影响吸收速度和程度的因素:药物理化性质、剂型、剂量给药途径:起效:吸入>肌内注射>皮下注射>口服>直肠>皮肤吸收环境等。
1.消化道吸收1)口服(oraladministration,peros,p.o.)大多数药物常采用口服给药,以肠道(小肠)吸收为主。
第三 章 常用 药 物 结 构与 作用 第三 节 解 热 镇 痛 及 非 甾 体 抗 炎药 一、 解 热 镇 痛药(一) 水 杨 酸类 阿司 匹林 水解生成的水杨酸与三氯化铁试液反应,呈紫堇色。
此反应用于鉴别本品。
生产或贮存中产生水杨酸,不仅有毒副作用,还可在空气中被氧化成一系列淡黄、红棕甚至深棕色的醌类有色物质。
变色后不可使用 抑制环氧合酶,白三烯增多,引起阿斯匹林哮喘。
代谢水杨酸水杨酰甘氨酸 在UDP-葡萄糖醛酸转移酶(UGTs )的催化下与葡萄糖醛酸结合,从肾排泄。
龙胆酸(1%) 贝诺 酯 阿司匹林分子中的羧酸与对乙酰氨基酚的酚羟基成酯后的前药。
(也称孪药)吸收后代谢为水杨酸和对乙酰氨基酚 二 氟 尼柳主要代谢产物是羧基和羟基与葡糖醛酸结合物(二) 苯 胺类 对 乙 酰 氨 基酚只有贮藏不当时才易发生水解本品不具抗炎作用 毒性代谢产物N-羟基衍生物和N -乙酰亚胺醌有肝毒性含巯基药物可作解毒剂谷胱甘肽乙酰半胱氨酸 二、 非 甾 体 抗 炎药(一) 羧 酸类 1. 芳 基 乙 酸类 吲哚 美辛 含有吲哚环对光敏感室温下空气中稳定 舒林酸前药 甲基亚砜基被还原为甲硫基化合物而显示生物活性药用顺式(Z ) 双氯 芬 酸钠非甾体药物中用量最小 抑制环氧化酶与5-脂氧合酶及花生四烯酸的释放2. 芳 基 丙 酸类 布洛 芬 使用消旋体,在体内无效的R -(-)-布洛芬被催化为S 异构体。
代谢产物主要是羟基化产物萘普生 萘丁 美酮又名萘普酮非酸性的前药 本身无活性,首关代谢为6-甲氧基-2-萘乙酸起作用 洛索洛芬前药 依托度酸 氟比洛芬 酮洛芬 非诺洛芬(二) 非 羧 酸类1. 昔 康类吡罗昔康第一个昔康类药物 美洛昔康 依索昔康 替诺昔康绝对生物利用度100%氯诺昔康2. 昔 布类 该类药物有增大心血管事件的风险选择性的环氧化酶II (COX-2)抑制药在阻断前列环素(PGI2)产生的同时,并不能抑制血栓素(TAX2)的生成,会打破体内促凝血和抗凝血系统的平衡,从而在理论上会增加心血管事件的发生率。
《药物化学习题》第二章化学结构与药理活性1.SAR2.Pharmacophoric Conformation3.药物的解离度与生物活性有什么关系?4.什么是药物的疏水键?第三章化学结构与药物代谢1.Drug Metabolism2.Phase I Biotransformation3.Phase II Biotransformation4.Soft Drug软药5.试举两例药物经代谢后活化的例子。
6.简要说明药物代谢对药物研究的作用。
第四章新药研究概论1.Molecular Drug Design2.Lead Compound3.Prodrug4.Soft Drug5.何谓药物分子设计?其过程可大致分为哪两个阶段?简述药物分子设计在新药研发中的重要性。
6.天然生物活性物质是先导物的重要来源,举例说明由此获得先导物并对其进行优化的研究过程有哪些特点。
7.何谓前药原理?前药应具备哪些特征?制备前药的一般方法有哪些?8.举例说明前药修饰可以达到哪些目的。
第五章镇静催眠药、抗癫痫药和抗精神失常药1.简述苯二氮卓类药物的构效关系。
2.巴比妥类药物的钠盐及苯妥英钠为何常制成粉针剂?3.写出巴比妥类药物的合成通法并说明为什么反应要采用无水操作。
4.试解释吩噻嗪环上取代基的位置和种类与它们的抗精神病活性及强度的关系。
第六章麻醉药1.Anesthetic Agents2.Local Anesthetics3.Structurally Nonspecific Drug4.Structurally Specific Drug5.根据化学结构将局部麻醉药分为哪几类?各类有哪些主要代表药?6.以对硝基甲苯为原料合成Procaine Hydrochloride,写出反应式,说明主要反应条件。
7.简述Procaine的化学稳定性,在配制注射液时应注意哪些问题?8.简述局麻药的构效关系。
第七章阿片样镇痛药1.Analgesics2.试写出Methadone的化学结构式及化学名,并说明它如何能保持与Morphine相似的构象。
第三章药物代谢动力学学习目标:1.掌握药物的体内过程(吸收、分布、代谢、排泄)、首关消除(首关效应)、酶诱导剂和酶抑制剂、恒比消除和恒量消除、半衰期、稳态血药浓度、生物利用度等概念。
2.熟悉表观分布容积概念。
3.了解其他内容。
基础知识一、药物的跨膜转运:(一)被动转运:简单扩散、滤过、易化扩散。
(二)主动转运。
二、药物的体内过程:吸收、分布、生物转化和排泄。
(一)吸收:药物从给药部位进入血液循环的过程。
给药的途径:1.口服给药:首关消除(首关效应、首关代谢、第一关卡效应):口服药物在从胃肠道进入肠壁细胞和门静脉系统首次通过肝脏时被部分代谢灭活,使进入体循环的有效药量减少的现象。
2.舌下给药:3.直肠给药:4.皮下注射及肌内注射:5.静脉注射和静脉点滴:6.吸入给药:7.皮肤、粘膜给药:(二)分布:药物吸收后从血液循环到达机体各个部位和组织的过程。
影响吸收的因素:血浆蛋白结合率、局部器官血流量、药物与组织的亲和力、体液PH值、体内屏障(血脑屏障、胎盘屏障、血眼屏障)。
(三)生物转化(代谢):进入机体内的药物发生的化学结构变化的过程。
生物转化的主要器官是肝脏。
1.生物转化的意义:灭活和活化。
2.生物转化的方式:Ⅰ相反应:氧化、还原和水解反应,Ⅱ相反应:结合反应。
3.药物生物转化酶系:(1)微粒体酶(2)非微粒体酶4.酶诱导与酶抑制(1)酶诱导:酶活性增强。
药酶诱导剂----凡能使肝药酶活性增强或合成增多的药物。
(2)酶抑制:酶活性降低。
药酶抑制剂----凡能使肝药酶活性降低或合成减少的药物。
(四)排泄:药物原型及其代谢产物经排泄器官或分泌器官排出体外的过程。
排泄的主要器官是肾脏。
1.肾排泄:肾小球滤过、肾小管分泌、肾小球重吸收。
2.胆汁排泄:肝肠循环(肠肝循环):药物随胆汁流入肠腔内重新被吸收入血。
3.乳汁排泄:4.其它:唾液、汗腺等。
三、药物代谢动力学的一些概念:(一)药物消除动力学:1.恒比消除(一级消除动力学):单位时间内消除恒定比例的药物。
药物化学---药物的化学结构与体内代谢转化方浩第一部分概述对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。
当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢。
药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。
药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。
药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构。
在这过程中,也有可能将药物转变成毒副作用较高的产物。
因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。
药物代谢在创新药物发现和临床药物合理应用中具有重要的地位。
通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。
因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。
在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。
因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。
药物的代谢通常分为两相:即第Ⅰ相生物转化(PhaseⅠ)和第Ⅱ相生物转化(PhaseⅡ)。
第Ⅰ相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。
第Ⅱ相又称为结合反应(Conjugation),将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。