数学一元一次不等式单元测试题
- 格式:doc
- 大小:109.41 KB
- 文档页数:3
苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B 种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.精品word 完整版-行业资料分享1、读书破万卷,下笔如有神。
第11章一元一次不等式组(满分150分 时间120分钟) 姓名一、选择题(每题3分,共36分)1、已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A . a +c <b +cB . a -c >b -cC . ac <bcD . ac >bc2、不等式组11x x ≤⎧⎨>-⎩的解集是( ) A . x >-1 B . x ≤1 C . x <-1 D . -1<x ≤13、若不等式00x b x a -<⎧⎨+>⎩的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24、下列说法中,错误..的是( ) A . 不等式2<x 的正整数解中有一个;B . 2-是不等式012<-x 的一个解C . 不等式93>-x 的解集是3->x ;D . 不等式10<x 的整数解有无数个5、在数轴上与原点的距离小于8的点对应的x 满足( )A .x <8B .x >8C .<-8或x >8D .-8<x <86、已知(x +3)2+m y x ++3=0中,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m >-9D .m <-97、已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x -y <0,则k 的取值范围是 ( )A .-1<k <-12 B .0<k <12 C .0<k <1 D .12<k <1 8、若15233m m +>⎧<⎪⎨-⎪⎩,化简│m +2│-│1-m │+│m │得 ( ) A .m -3 B .m +3 C .3m +1 D .m +19、若不等式组1+240x a x >⎧⎨-⎩≤有解,则a 的取值范围是( ) A .a ≤3 B .a <3 C .a <2 D .a ≤210、某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A .5B .6C .7D .811、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人12、某大型超市从生产基地购进一批大樱桃,运输过程中质量损失10%,假设超市不计其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高 ( )A . 30% B .33.3% C . 33.4% D .40%二、填空题(每空3分,共45分)13、不等式x 41-≤-8的解集是___________ 14、当a 时,不等式(a —1)x >1的解集是x <11-a 。
单元测试(二)一元一次不等式与一元一次不等式组一、选择题(每小题3分, 共30分)1.甲种蔬菜保鲜适宜的温度是 , 乙种蔬菜保鲜适宜的温度是 , 将这两种蔬菜放在一起同时保鲜, 适宜的温度是( )A.2C ~3C ︒︒B.2C ~8C ︒︒C.3C ~6C ︒︒D.6C ~8C ︒︒2.不等式213x ->的解集为( )A.2x >B.1x >C.2x >-D.2x <3.不等式组12342x x +>⎧⎨-⎩,的解集表示在数轴上正确的是( ) A. B. C.D. 4.已知 , 若对任意实数a, 以下结论: 甲: ;乙: ;丙: ;丁: , 其中一定正确的是( ) A.甲 B.乙 C.丙 D.丁5.如图, 分别表示苹果、梨、桃子的质量, 同类水果质量相等, 则下列关系正确的是( )A.a c b >>B.b a c >>C.a b c >>D.c a b >>6.如图是一次函数 的图象, 当 时, x 的取值范围是( )A.3x< B.3x> C.1x< D.1x>7.不等式组395xx⎧⎨<⎩,的整数解共有()A.1个B.2个C.3个D.4个8.如果点在第二象限, 那么关于x的不等式的解集是()A.1x>- B.1x<- C.1x> D.1x<9.某商品进价10元, 标价15元, 为了促销, 现决定打折销售, 但每件利润不少于2元, 则最多打几折销售()A.6折B.7折C.8折D.9折10.如图, 射线OA是第三象限的角平分线, 若点在第三象限内且在射线OA的下方, 则k的取值范围是()A.12k< B.132k<< C.1423k<< D.433k<<二、填空题(每小题4分, 共20分)11.已知, 则x的取值范围是_________.12.要使关于x的方程的解满足, 则m的取值范围是__________.13.若关于x的一元一次不等式组无解, 则的取值范围是________.14.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是__________.15.有3人携带会议材料乘坐电梯, 这三人的体重共, 每捆材料重, 电梯最大负荷为, 则该电梯在此3人乘坐的情况下最多还能搭载_____捆材料.三、解答题(共50分)16.(8分)解不等式: .17.(12分)放学时, 小刚问小东今天数学作业是哪几题, 小东回答说: “不等式组的整数解就是今天数学作业的题号”, 聪明的你知道今天的数学作业是哪几题吗?18.(14分)某校实行学案式教学, 需印制若干份数学学案, 印刷厂有甲、乙两种收费方式, 除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空: 甲种收费的函数关系式是____________;乙种收费的函数关系式是__________;活页卷(2)该校某年级每次需印制(含100和450)份学案, 选择哪种印刷方式较合算?19.(16分)某公交公司有型两种客车, 它们的载客量和租金如下表:红星中学根据实际情况, 计划租用型客车共5辆, 送七年级师生到基地参加社会实践活动, 设租用A型客车x辆, 根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元, 求x的最大值;(3)在(2)的条件下, 若七年级师生共有195人, 写出所有可能的租车方案, 并确定最省钱的租车方案.参考答案1.C2.A3.C4.D5.C6.A7.B8.B9.C 10.D11.12x12.7744m-<<13.1a14.49x>15.4216.解:17.解: 不等式组的解集为数学作业是第1题和第2题.18.解: (1)(2)当时, 选择乙种印刷方式较合算;当时, 甲、乙两种印刷方式一样合算;当时, 选择甲种印刷方式较合算.19.解: (1)(2)x的最大值为4.(3)有2种方案: ①租A型客车3辆, B型客车2辆, 租车费用为1760元;②租A型客车4辆, B型客车1辆, 租车费用为1880元.故最省钱的方案是租A型客车3辆, B型客车2辆.。
第三章、一元一次不等式单元测试(难度:简单)参考答案与试题解析一.选择题(共10小题)1.在下列数学表达式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x ﹣1中,是不等式的有()A.2个B.3个C.4个D.5个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故选:C.【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.把不等式组(b<a<0)的解集表示在数轴上,正确的是()A.B.C.D.【分析】先根据b<a<0,在数轴上表示﹣a和﹣b,再把不等式组的解集在数轴上表示出来,找出符合条件的选项即可.【解答】解:∵b<a<0,∴﹣b>﹣a>0,∴不等式组的解集表示在数轴上为.故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知a<b,则下列不等式一定成立的是()A.<B.﹣2a<﹣2b C.a﹣1>b﹣1D.a+3>b+3【分析】根据不等式的性质分析判断.【解答】解:A、不等式a<b的两边同时除以3,不等号的方向不变,即,故此选项符合题意;B、不等式a<b的两边同时乘﹣2,不等号的方向改变,即﹣2a>﹣2b,故此选项不符合题意;C、不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,故此选项不符合题意;D、不等式a<b的两边同时加上3,不等号的方向不变,即a+3<b+3,故此选项不符合题意.故选:A.【点评】本题主要考查了不等式的性质.解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把一些书分给同学,设每个同学分x本.若____;若分给11个同学,则书有剩余.可列不等式8(x+6)>11x,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.分给8个同学,则每人可多分6本D.分给6个同学,则每人可多分8本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式8(x+6)>11x,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.用适当的符号表示“x的2倍加上5不大于x的3倍减去4”,正确的是()A.2(x+5)≤3(x﹣4)B.2(x+5)<3(x﹣4)C.2x+5<3x﹣4D.2x+5≤3x﹣4【分析】根据题意列出不等式即可.【解答】解:“x的2倍加上5不大于x的3倍减去4”表示为:2x+5≤3x﹣4.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6.每年的6月5日为世界环境日.中国生态环境部将“共建清洁美丽世界”作为今年环境日的主题,旨在促进全社会增强生态环境保护意识,投身生态文明建设.某校学生会积极响应国家号召,组织七年级和八年级共100名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?设参加活动的八年级学生x名,由题意得()A.15x+20(100﹣x)≥1800B.15x+20(100﹣x)>1800C.20x+15(100﹣x)≥1800D.20x+15(100﹣x)≤1800【分析】设至少需要x名八年级学生参加活动,则参加活动的七年级学生为(100﹣x)名,由收集塑料瓶总数不少于1800个建立不等式即可.【解答】解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得:15(100﹣x)+20x≥1800,故选:C.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式,解答时由收集塑料瓶总数不少于1800个建立不等式是解题的关键.7.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.已知关于x的不等式组的解集中至少有5个整数解,则整数a的最小值为()A.2B.3C.4D.5【分析】表示出不等式组的解集,由解集中至少有5个整数解,确定出a的范围,进而求出整数a的最小值即可.【解答】解:不等式组整理得:,解得:﹣<x<a,∵不等式组解集中至少有5个整数解,即至少5个整数解为﹣1,0,1,2,3,∴a>3,则整数a的最小值为4.故选:C.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.9.若定义一种新的取整符号[],即[x]表示不超过x的最大整数.例如:[2.3]=2,[−1.6]=−2,则下列结论正确个数是()①[﹣2.1]+[0.1]=﹣3;②[x]+[−x]=0;③方程x﹣[x]=的解有无数多个;④若[x+1]=2,则x的取值范围是3≤x<4;A.1B.2C.3D.4【分析】①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;【解答】解:对于①,[﹣2.1]+[0.1]=﹣3+0=﹣3,正确;对于②,由[0.5]+[﹣0.5]=0﹣1=﹣1,不正确;对于③,当x=,1,2,...时,方程均成立,正确;对于④,由[x+1]=2,得2≤x+1<3,即1≤x<2,不正确;故选:B.【点评】本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.10.已知关于x的不等式组有且只有三个整数解,且关于y的一元一次方程ay﹣4=2y有整数解,则所有满足条件的整数a值之和是()A.﹣1B.0C.1D.2【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据不等式组有且只有三个整数解,确定a的取值范围,再解一元一次方程,根据方程有整数解确定满足条件的a的值,从而求和.【解答】解:,解不等式5x﹣4<4﹣a,得:x<,∴不等式组的解集为﹣2<x<,又∵该不等式组有且只有三个整数解,∴1<≤2,解得:﹣2≤a<3,ay﹣4=2y,移项,得:ay﹣2y=4,合并同类项,得:(a﹣2)y=4,系数化1,得:y=,∵该方程有整数解,且a﹣2≠0,∴符合条件的整数a有﹣2、0、1,∴满足条件的整数a值之和是﹣2+0+1=﹣1.故选:A.【点评】本题考查解一元一次不等式组,解一元一次方程,理解解一元一次不等式组和解一元一次方程的步骤,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题(共6小题)11.不等式2x<﹣12的解集是x<﹣6.【分析】直接把未知数的系数化“1”即可.【解答】解:2x<﹣12,解得:x<﹣6,故答案为:x<﹣6.【点评】本题考查的是一元一次不等式的解法,掌握“解一元一次不等式的步骤”是解本题的关键.12.若a<b,那么﹣2a>﹣2b(填“>”“<”或“=”).【分析】根据不等式的性质3得出答案即可.【解答】解:∵a<b,∴﹣2a>﹣2b,故答案为:>.【点评】本题考查了不等式的性质,能熟记不等式的性质3(不等式的两边都乘同一个负数,不等号的方向改变)是解此题的关键.13.已知(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,则k+1 不是(填“是”或“不是”)不等式x+2<2x﹣1的解.【分析】先根据二元一次方程的定义求出k的值,再求出不等式的解集即可判断.【解答】解:∵(k﹣5)x|k|﹣4﹣2y=1是关于x,y的二元一次方程,∴,解得k=﹣5;解不等式x+2<2x﹣1,得x>3,∵k+1=﹣5+1=﹣4<3,∴k+1不是不等式x+2<2x﹣1的解.故答案为:不是.【点评】本题考查了二元一次方程的定义以及不等式的解集,掌握二元一次方程的定义是解答本题的关键.14.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x的取值范围是2<x≤4.【分析】根据第二次运算结果不大于28,且第三次运算结果要大于28,列出关于x的一元一次不等式组,解之即可得出x的取值范围.【解答】解:依题意得:,解得:2<x≤4,故答案为:2<x≤4.【点评】本题考查一元一次不等式组的应用,解题的关键是理解题意,能列出不等式组.15.我国《劳动法》对劳动者的加班工资作出了明确规定,“五一”长假期间,前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小屈由于工作需要,今年5月2日、3日、4日共加班三天,已知小屈的日工资标准为247元,则小屈“五一”长假加班三天的加班工资应不低于1976元.【分析】设小屈“五一”长假加班三天的加班工资应不低于x元,由“前3天(5月1日至5月3日)是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资.后4天(5月4日至5月7日)是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资”,列出一元一次不等式,解不等式即可.【解答】解:设小屈“五一”长假加班三天的加班工资应不低于x元,由题意得:x≥2×247×300%+247×200%,解得:x≥1976(元),故答案为:1976.【点评】本题考查了一元一次不等式的应用,找准对应关系,列出一元一次不等式是解题的关键.16.已知三个实数a,b,c,满足a+2b+3c=9,2a﹣b﹣4c=﹣2,且a≥0,b≥0,c≥0,则4a+3b+c的最小值为17.【分析】有两个已知等式a+2b+3c=9,2a﹣b﹣4c=﹣2,可用其中一个未知数表示另两个未知数得,然后由条件:a、b、c均是非负数,可求出第一个未知数c的取值范围,代入m=3a+b﹣7c,即可得解.【解答】解:联立,解得,由题意知:a、b、c均是非负数,则,解得﹣1≤c≤2,所以4a+3b+c=4(1+c)+3(4﹣2c)+c=4+4c+12﹣6c+c=16﹣c当c=﹣1时,4a+3b+c有最小值,即4a+3b+c=16﹣(﹣1)=17.故答案为:17.【点评】此题主要考查不等式的性质、解三元一次方程组、代数式求值,涉及的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.三.解答题(共7小题)17.解下列不等式:(1);(2).【分析】根据解一元一次不等式的步骤解不等式即可.【解答】解:(1)两边同时乘以6得:6﹣2(8+x)≥3x,去括号得:6﹣16﹣2x≥3x,移项得:﹣2x﹣3x≥﹣6+16,合并同类项得:﹣5x≥10,把未知数系数化为1得:x≤﹣2;(2)两边同时乘以6得:2(2x+1)﹣(2﹣x)>3(x﹣1),去括号得:4x+2﹣2+x>3x﹣3,移项得:4x+x﹣3x>﹣3﹣2+2,合并同类项得:2x>﹣3,把未知数系数化为1得:x>﹣.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的一般步骤.18.解不等式组:,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,再取公共解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥2,∴2≤x<3,把解集表示在数轴上:【点评】本题考查解一元一次不等式组,解题的关键是掌握取不等式公共解集的方法.19.下面是小虎同学解不等式的过程,请认真阅读并完成相应任务.解:去分母,得3(1+x)﹣2(2x+1)≤6………第一步去括号,得3+3x﹣4x﹣2≤6……………………………第二步移项,得3x﹣4x≤6﹣3+2………………………………第三步合并同类项,得﹣x≤5…………………………………第四步两边都除以﹣1,得x≤﹣5………………………………第五步任务:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)请直接写出该不等式的正确解集.【分析】(1)观察解不等式第二步的步骤即可求解;(2)观察解不等式的步骤,找出出错的步骤,分析其原因即可;(3)写出不等式正确解集即可.【解答】解:(1)上述解题过程中,第二步是依据乘法分配律(运算律)进行变形的;故答案为:乘法分配律;(2)第五步开始出现错误,这一步错误的原因是不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);故答案为:五,不等式两边都乘﹣1,不等号的方向没有改变(或不符合不等式的性质3);(3)去分母,得3(1+x)﹣2(2x+1)≤6………第一步,去括号,得3+3x﹣4x﹣2≤6……………………………第二步,移项,得3x﹣4x≤6﹣3+2………………………………第三步,合并同类项,得﹣x≤5…………………………………第四步,两边都除以﹣1,得x≥﹣5………………………………第五步.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.20.某文教用品商店用1200元购进了甲、乙两种圆珠笔.已知甲种笔进价为每支12元,乙种笔进价为每支10元.文教店在销售时甲种笔售价为每支15元,乙种笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种笔各多少支;(2)若该文教商店以原价再次购进甲、乙两种笔,且购进甲种笔的数量不变,而购进乙种笔的数量是第一次的2倍,乙种笔按原售价销售,而甲种笔降价销售,当两种笔销售完毕时,要使再次购进的笔获利不少于340元,甲种笔最低售价每支应为多少元?【分析】(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,根据其进价和利润建立等量关系列出方程组求出其解即可.(2)设甲种圆珠笔每只的售价为m元,就可以求出甲种圆珠笔每只的利润,表示出甲种圆珠笔的总利润再加上乙种圆珠笔的总利润就是两种圆珠笔销售完后的总利润,由题意就可以建立不等式.从而求出其解.【解答】解:(1)设商店购进甲种圆珠笔x支,乙种圆珠笔y支,由题意得,,解得.答:这个商店购进甲种圆珠笔50支,乙种圆珠笔60支.(2)设甲种笔每只的最低售价为m元,由题意得,50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.∵m为整数,∴m的最小值为14,故甲种笔每只的最低售价为每支14元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出等式是解题关键.21.已知方程组的解x为非负数,y为非正数,求a的取值范围.【分析】解方程组得,根据“x为非负数,y为非正数”得出,解之即可.【解答】解:解方程组得,由题意知,,解得a≥3.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.冰墩墩(如图)是2022年北京冬季奥运会的吉祥物.某商店购进冰墩墩手办和冰墩墩装饰扣若干个,已知每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元.(1)冰墩墩装饰扣和冰墩墩手办的进价各多少元?(2)若商店以相同的价格1200元分别购进冰墩墩装饰扣和冰墩墩手办若干个,其中冰墩墩装饰扣的售价要比冰墩墩手办的售价少30元,且销售完毕后获利不低于1100元,问每个冰墩墩手办的售价至少是多少元?【分析】(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,根据“每个冰墩墩装饰扣的进价是冰墩墩手办进价的,购进5个冰墩墩手办比购进4个冰墩墩装饰扣多花140元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用数量=总价÷单价,可求出购进冰墩墩装饰扣及冰墩墩手办的数量,设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,利用总利润=销售单价×销售数量﹣进货总价,结合销售完毕后获利不低于1100元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设冰墩墩装饰扣的进价为x元,冰墩墩手办的进价为y元,依题意得:,解得:.答:冰墩墩装饰扣的进价为40元,冰墩墩手办的进价为60元.(2)购进冰墩墩装饰扣的数量为1200÷40=30(个),购进冰墩墩手办的数量为1200÷60=20(个).设每个冰墩墩手办的售价为m元,则每个冰墩墩装饰扣的售价为(m﹣30)元,依题意得:20m+30(m﹣30)﹣1200﹣1200≥1100,解得:m≥88,∴m的最小值为88.答:每个冰墩墩手办的售价至少为88元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)x<是0阶不等式;是1阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…其中a1<a2<a3<a4<…如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,请求出m的值以及p的取值范围.【分析】(1)根据题目中的定义进行分析;(2)根据题目中的定义进行分析,可知整数解为1,2,3,4,从而可得出a的范围;(3)分析题意,可以利用特殊值法,看(m﹣3)是从第几个整数开始的,从而求解.【解答】解:(1)∵x<没有正整数解,∴x<是0阶不等式;由得1<x<3,∴有1个正整数解,∴是1阶不等式组,故答案为:0,1;(2)解不等式组得:1≤x<2a,由题意得:x有4个正整数解,为:1,2,3,4,∴4<2a≤5,解得:2<a≤2.5;(3)由题意得,m是正整数,且p≤x<m有(m﹣3)个正整数解,∴2<p≤3,=5,∴m=10.【点评】本题考查了一元一次不等式组的正整数解,理解题中的新定义是解题的关键.。
湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1已知3>2,两边都乘x ,则正确的是() A .3x>2x B .3x ≥2xC .3x ≤2xD .以上都不正确2下列不等式组求解正确的是()A .不等式组{x >3,x >5的解集是x>3B .不等式组{x ≥3,x <5的解集是3≤x<5C . 不等式组{x <3,x <5的解集是x<5D . 不等式组{x >3,x <5无解3不等式-2x<1的两边都除以-2得 .4代数式3x -4的值不小于代数式5-x 的值,列不等式为 .5若不等式(3m -2)x<7的解集为x<12,则m= .6x 同时满足不等式2(x+2)<x+5和不等式3(x -2)+8<2x ,则x 的取值范围是 . 7不等式-3≤2x -13<5的解集是 .8解不等式:3x+2(2-4x )<19.9求不等式组{2(x +8)≤10−4(x -3),x+12-6x+73<1的整数解.10若不等式5(x -2)+8<6(x -1)+7的最小整数解为方程3x -ax=4的解,求a 的值.【能力巩固】11已知a>0 ,且b 是有理数,那么一定有()A .-b 2<aB .-a 2<bC .a -b>0D .a -b 2<012一元一次不等式组{x >a,x <b,且a ≠b ,若它无解,则a 与b 的关系为 () A .a>b B .a<b C .a>b>0 D .a<b<013某商店以每件9元的进价购进一批商品,希望每件获毛利(毛利=销售价-进货价)不少于1元,但上级规定毛利不超过销售价的20%,设这件商品的销售价为x 元,根据题意列不等式组是()A .{x -9≥1,x -9≤20%xB . {x -9≤1,x -9≤20%xC . {x -9≥1,x -9≤20%D . {x -9≤1,x -9≥20%x14若不等式组{x >2m +1,x >7−m的解集为x>7-m ,则m 2 . 15求同时满足不等式x -3<4(x+3)和5(2x -1)≤3x -4的最大整数和最小整数.16已知|3x-2|+(6x-y+4k)2=0,若y>2k-1,求k的取值范围.【素养拓展】17.2024年4月18日,以“上春山寻好茶干净黔茶全球共享”为主题的2024中国好绿茶大会暨第16届贵州茶产业博览会在遵义湄潭中国茶城广场开幕,全国各地客商齐聚于此.一采购商看中了湄潭翠芽和都匀毛尖这两种优质茶叶,并得到信息如下:湄潭翠芽都匀毛尖总价/元251800质量/千克311270(1)求每千克湄潭翠芽和都匀毛尖的进价.(2)若湄潭翠芽和都匀毛尖这两种茶叶的销售单价分别是450元/千克和260元/千克,该采购商准备购进这两种茶叶共30千克,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价-进价)参考答案基础达标作业1.【答案】D2.【答案】B3.【答案】x>-124.【答案】3x-4≥5-x5.【答案】1636.【答案】x<-27.【答案】-4≤x<88.【答案】解:去括号,得3x+4-8x<19移项,得-5x<15∴x>-3.9.【答案】解:不等式组化简得{x≤1, x>−179,∴不等式组的解集为-179<x≤1∴不等式组的整数解为-1,0,1.10.【答案】解:解不等式得x>-3,∴最小整数解为x=-2.∴3×(-2)-(-2)a=4,∴a=5.能力巩固作业11.【答案】A12.【答案】A13.【答案】A14.【答案】≤15.【答案】解:由题意得{x-3<4(x+3), 5(2x-1)≤3x-4,解得{x>−5, x≤17,∴不等式组的解集为-5<x≤17∴符合题意的最大整数是0,最小整数是-4.16.【答案】解:由题意得{3x-2=0,6x-y+4k=0,解得{x=23,y=4k+4.又∴y>2k -1,∴4k+4>2k -1,∴k>-52素养拓展作业17.【答案】解:(1)设每千克湄潭翠芽的进价是x 元,每千克都匀毛尖的进价是y 元根据题意得{2x +5y =1800,3x +y =1270,解得{x =350,y =220. 答:每千克湄潭翠芽的进价是350元,每千克都匀毛尖的进价是220元.(2)设购进m 千克湄潭翠芽,则购进(30-m )千克都匀毛尖根据题意得{350m +220(30−m)≤10000,(450-350)m +(260−220)(30−m)≥2660,解得733≤m ≤34013.∴m 为正整数,∴m 可以为25,26.答:该采购商共有2种进货方案.。
第八章 一元一次不等式 单元测试一、选择题:1. (2011上海)如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D)a b c c> . 2. (2011湖南湘潭市)不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为3. (2011江苏淮安)不等式322x x +<的解集是( ) A.x <-2 B. x <-1 C. x <0 D. x >24. (2011山东临沂)不等式组⎪⎪⎩⎪⎪⎨⎧≥+01-3x 3-x 12x的解集是( )A .x≥8B .3<x≤8C .0<x≤2D .无解5 (2011山东烟台)不等式4-3x ≥2x -6的非负整数解有( ) A.1 个 B. 2 个 C. 3个 D. 4个6. (2011山东日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 7. (2011山东威海)如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( ) A .m =2B .m >2C .m <2D .m ≥28. (2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 二、填空题:B21 0 C2 1 0 D21 0 A2 1 09、“x 的2倍与5的差小于0”用不等式表示为 . 10. (2011江苏泰州)不等式2x+1>﹣5的解集是 .11、幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余 59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.12. (2011湖北黄冈)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.13. (2011四川眉山)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是____ 三、解答题:14. (2011浙江省舟山)解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.15. (2011江苏扬州)解不等式组 )2( 132121)1( 313⎪⎩⎪⎨⎧++≤+-<+xx x x ,并写出它的所有整数解。
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是 .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。
第3章一元一次不等式数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知a>b,若c是任意实数,则下列不等式中总是成立的是( )A.a+c<b+cB.a﹣c>b﹣cC.ac<bcD.ac>bc2、不等式组的解集在数轴上表示正确的是()A. B. C.D.3、不等式组的解集是()A.x>﹣2B.﹣2<x<C.x>D.无解4、不等式组的解集在数轴上表示正确的是()A. B. C. D.5、不等式组的解集在数轴上表示正确的是()A. B. C.D.6、如果不等式组的解集是3<x<5,那么a,b的值分别为()A.3,5B.-3,-5C.-3,5D.3,-57、不等式组的解集在数轴上表示正确的是()A. B. C.D.8、按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否大于365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤959、若关于x的分式方程=1的解为正数,则字母a的取值范围是()A.a<2B.a≠2C.a>1D.a>1且a≠210、如果,,那么下列不等式成立的是A. B. C. D.11、不等式2x﹣2<0的解集是()A.x<1 B.x<﹣1C.x>1D.x>﹣112、已知不等式,其解集在数轴上表示正确的是()A. B. C. D.13、不等式2x+3≥1的解集在数轴上表示为()A. B. C.D.14、不等式组的解集在数轴上表示正确的是( )A. B. C.D.15、知a>b,则下列不等式中,正确的是( )A.-4a>-4bB.a-4>4-bC.4-a>4-bD.a-4>b-4二、填空题(共10题,共计30分)16、不等式组的解集为________.17、a________时,不等式(a﹣3)x>1的解集是x<.18、邮政部门规定:信函重100g以内(包括100g)每20g贴邮票0.8元,不足20g重以20g计算;超过100g,先贴邮票4元,超过100g部分每100g加贴邮票2元,不足100g重以100g计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12g,每个信封重4g,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是________元.19、商场有一种小商品进价为元,出售标价为元,后来由于积压,准备打折销售,但要保证利润率不低于,则最多可打________折.20、不等式的解集为,则m的值为________.21、若关于x的分式方程=1的解为正数,那么字母a的取值范围是________.22、不等式的正整数解为________.23、不等式的解为________.24、若关于的不等式的整数解共有个,则的取值范围是________.25、不等式的最小整数解是________.三、解答题(共5题,共计25分)26、解不等式组并把它的解集表示在数轴上.27、解不等式:4x+5≥1﹣2x.28、(1)解方程:;(2)解不等式组:.29、解不等式组:,并在数轴上表示出不等式组的解集.30、解不等式组:,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、B6、D7、B8、D9、D10、D11、A12、A13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第二章《一元一次不等式与一元一次不等式组》章测试(二)一、选择。
1.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有( )A.1个B.2个C.3个D.4个2.若关于x的不等式组530xx m-≥⎧⎨-≥⎩有实数解,则实数m的取值范围()A.53m≥B.53m<C.53m>D.53m≤3.不等式组110320xx⎧+>⎪⎨⎪-⎩…的解集在数轴上可表示为( )A.B.C.D.4.下列说法正确的有()①x=4是x−3>1的解;②不等式x−3<0的解有无数个;③x>5是不等式x+2>3的解集;④x=3是x+2>1的解;⑤不等式x+2<5有无数个正整数解;A.1个B.2个C.3个D.4个5.某款捷安特自行车进价是每辆1000元,标价是每辆1500元,店庆期间,商场为了答谢顾客,进行打折促销活动,若要保证利润不低于20%,则最多可打()折.A.6B.7C.8D.96.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t (℃)的变化范围是( )A .t >21B .t <32C .21<t <32D .21≤t≤327.若关于x 的方程5x -2m =-4-x 的解在2与10之间(不包括2和10),则m 的取值范围是( )A .m>8B .m<32C .8<m<32D .m<8或m>328.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->9.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <5410.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A B C D E A ----- 的方向绕广场行走,甲的速度为 50/米分,乙的速度为 46/米分,则两人第一次刚走到同一条边上时 ()A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D处二、填空。
一元一次不等式单元测试题一
班级 姓名 号次
一、选择题:(每小题3分,共30分)
1、如果y x >,那么下列不等式不成立的是( )
A 、33->-y x
B 、y x 33>
C 、33y
x
> D 、y x 33->-
2、不等式512>-x 的解集是( )
A 、5>x
B 、2>x
C 、3>x
D 、3<x
3、下列各式中,是一元一次不等式的是( )
A 、835<-
B 、x x 112<-
C 、832
≥x D 、1822≤+x π
4、当21
-=x 时,多项式12-+kx x 的值小于0,那么k 的值为( )
A .23-<k
B .23<k
C .23->k
D .23
>k
5、下列说法中,肯定错误的是( )
A 、62->-x 的解集是3<x
B 、-8是不等式82-<-x 的解
C 、2>x 的整数解有无数个
D 、3>x 没有负整数解
6、某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是( )
A .9>x
B .9≥x
C .9<x
D .9≤x
7、如果0>>a b ,那么 [ ].
A .b a 1
1
->- B .b a 1
1
< C .b a 1
1
-<- D .a b ->-
8、若三个连续正奇数的和不大于27,则这样的奇数组有 ( )
A .3组
B .4组
C .5组
D .6组
9、已知不等式10x -≥,此不等式的解集在数轴上表示为( )
10、现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )
A .4辆
B .5辆
C .6辆
D .7辆
二、填空题:(每小题2分,共20分)
11、不等式62>-x 的解集是 ;
12、若关于(a-1)x >0的解集是x <0,则a 的取值范围是 ;
13、当x 时,代数式32-x 的值是非负数;
14、不等式138≥-x 的正整数解是 ;
15、“a 的一半与负6的差不大于-2”所列的不等式是 。
16、用不等号填空:若0<<b a ,则 8a 8b ; a 1
- b
1-; 12+-a 12+-b 。
17、当x 时,52-x 不小于零;当x 时,52-x 不大于1-x 。
18、若2151+
-=x y ,1212+=x y ,使21y y <的最小整数是________. 19、若11
|1|-=--x x ,则x 的取值范围是_______. 20、若x-k ≤0的正整数解是1、2、3,那么k 的取值范围是
三、解答题:(共50分)
21、(18分)解下列不等式,并把它们的解在数轴上表示出来.
(1)2(x-1)-3<1 (2)6
5232413-≥-+x x
(3)13
12523-+≥-x x
22、(6分)关于x 的方程5x+3(m-x )=31的解是非负数,求m 的取值范围。