2010江苏省高考数学真题(含答案)
- 格式:docx
- 大小:214.50 KB
- 文档页数:18
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。
3一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.[解析]考查集合的运算推理。
3B,a+2=3,a=1.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.[解析]考查复数运算、模的性质。
z(2-3i)=2(3+2i),2-3i与3+2i的模相等,z的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。
31p624、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2010年江苏高考数学试题解析与答案( 大题15 ─ 20 )(15.)【本题简单 “点坐标”→可以马上想到“向量”】⑴求线段长度,常2种方法,①向量的模 ②两点距离公式 答案 ||210,||4 2.AB AC AB AC +=-=⑵ 115t =-(16.)【立体几何 考查棱锥 ★★立体几何证明两大思路①纯几何方法 ②向量法】本题先介绍纯几何方法 以后介绍向量法 ⑴ 线线垂直 ???? 方法提问!⑵ 点面距离 ??? 方法提问 !答案:⑴ 证明过程略⑵ (方法一)平行线转化法 要好好理解 !!!思考 改作求AB 中点E 点到平面PBC 的距离? 如何做呢 ? 思考 点A 到平面PBC 的距离与点E 到平面PBC 的距离有啥关系?具体做法:分别取AB 、PC 的中点E 、F ,连DE 、DF ,则:易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等。
又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍。
由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC ,因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F 。
易知DF=22,故点A 到平面PBC 的距离等于2。
(方法二) 体积法 (针对锥体)体积法:连结AC 。
设点A 到平面PBC 的距离为h 。
因为AB ∥DC ,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得A B C ∆的面积1A B C S ∆=。
由PD ⊥平面ABCD 及PD=1,得三棱锥P-ABC 的体积1133A B C V S P D ∆=⋅=。
因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC 。
又PD=DC=1,所以222PC PD DC=+=。
由PC ⊥BC ,BC=1,得P B C ∆的面积22PBC S ∆=。
由A PBC P ABC V V --=,1133P B C S h V ⋅==,得2h =,故点A 到平面PBC 的距离等于2。
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。
3一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.[解析]考查集合的运算推理。
3B,a+2=3,a=1.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.[解析]考查复数运算、模的性质。
z(2-3i)=2(3+2i),2-3i与3+2i的模相等,z的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。
31p624、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________简析:由集合中元素的互异性有a+2=3或a2+4=3,⇒a=1或a2=-1(舍) ⇒a=12、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只_▲__4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
简析:观察频率分布直方图,知有0.06×5×100=30根长度小于20mm 5、设函数f(x)=x(e x+ae-x),(x∈R)是偶函数,则实数a=_______▲_________简析:由偶函数⇒f(-x)=f(x) ⇒x(e x+ae-x)=-x(e-x+ae x)x∈R a=-1⇒x(e x+e-x)(1+a)=0 ⇒6、在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______简析:法一——直接运用焦半径公式求。
因焦半径知识课本中未作介绍,此不重点说明;法二——基本量法求解。
由题意知右焦点坐标为F(4,0),M 点7、右图是一个算法的流程图,则输出S 的值是______▲_______ 简析:读图知这是计算S=1+21+22+…+2n 的一个算法,由S=2n -1≥33且n 为正整数知n=5时跳出循环,此时,输出S=1+21+22+…+25=638、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____简析:对原函数求导得y '=2x (x>0),据题意,由a 1=16=24依次求得a 2=8,a 3=4,a 4=2,a 5=1,所以a 1+a 3+a 5=219、在平面直角坐标系xOy 中,已知圆x 2+y 2=4四个点到直线12x -5y+c=0的距离为1,则实数c 的取值范围是______▲_____10、定义在区间(0,π2)上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____11、已知函数f(x)=⎩⎪⎨1 ,x<0,则满足不等式f(1-x 2)>f(2x)的x 的范围是____▲____简析:设t=1-x 2,当x<-1时,t<0,2x<-2;f(1-x 2)=1,f(2x)=1⇒ f(1-x 2)= f(2x);当x>1时,t<0,2x>2,f(1-x 2)=1,f(2x)=(2x)2+1>5,显然不满足f(1-x 2)>f(2x)当-1≤x<0时,t ≥0,2x<0,所以f(1-x 2)=(1-x 2)2+1≥1,f(2x)=1,⇒f(1-x 2)>f(2x) (x ≠-1);当0≤x ≤1时,t ≥0,2x ≥0,所以f(1-x 2)=(1-x 2)2+1≥1,f(2x)=(2x)2+1,由f(1-x 2)>f(2x)⇒ (1-x 2)2+1>(2x)2+1⇒x 4-12、设实数x,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x3y4的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,b a +a b =6cosC ,则tanC tanA +tanC tanB=__▲14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=(梯形的周长)2梯形的面积,则S 的最小值是_______▲_______简析:如图,△ABC 是边长为1的正△,EF ∥BC ,四边形BCFE 为梯形;二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长(2)设实数t 满足(AB→-t ·OC →)·OC →=0=0,求t 的值 简析:⑴据题意,本小问解法不唯一,如利用平行四边形性质求出第四点D ,然后运用两点间距离公式求两对角线;又如,亦可利用向量知识,求向量AB→与AC →和、差的模;16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900(1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离16题图A B简析:⑴证:因PD ⊥底面ABCD ,BC 在底面上,所以PD ⊥BC ; 又因∠BCD=900,所以BC ⊥DC ;又PD 、DC 相交于D ,所以BC ⊥平面PDC又PC 在平面PDC 上,所以BC ⊥PC ,即PC ⊥BC⑵在底面ABCD上作AE∥BC交CD延长线于E,则E在平面PDC 上;在平面PDC上作EF⊥PC交PC于F,结合⑴推知EF⊥平面PBC,所以垂线段EF长就是点A到平面PBC的距离。
2010年江苏高考数学真题及答案参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=305、设函数f(x)=x(e x+ae -x)(x ∈R)是偶函数,则实数a =_______▲_________ [解析]考查函数的奇偶性的知识。
g(x)=e x+ae -x为奇函数,由g(0)=0,得a =-1。
6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______ [解析]考查双曲线的定义。
422MF e d ===,d 为点M 到右准线1x =的距离,d =2,MF=4。
7、右图是一个算法的流程图,则输出S 的值是______▲_______[解析]考查流程图理解。
2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh 锥体,其中S 是锥体的底面面积,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.设集合{1,1,3}A,4,22aa B ,3BA ,则实数a 的值为____▲____.1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验.【解析】由题意得1,32a a .又由342a不符合题意.经检验得1a.2.设复数z 满足(23)64z i i (i 为虚数单位),则z 的模为____▲____.2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算.【解析】由i i z 46)32(得,2)32)(32()32)(46(3246i i i i i ii z即2,2z i z.3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21.【命题意图】本题考查古典概型知识.【解析】31.62p4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm.4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005.5.设函数()()xxf x x eae (x R )是偶函数,则实数a 的值为____▲____.5.【答案】1.【命题意图】本题考查函数的奇偶性.【解析】设R xae e x g x x ,)(,由题意分析)(x g 应为奇函数(奇函数奇函数=偶函数),又R x ,0)0(g ,则,01a 所以1a .6.在平面直角坐标系xOy 中,已知双曲线221412xy上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____. 6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用.【解析】由题意得点15,3(M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(=4.或用第二定义:2MF ed,2d,4MF .7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值.【解析】由流程图得12345122222S =1+2+48+16+32=6333,即.63S 8.函数2(0)y x x的图象在点2(,)k ka a 处的切线与x 轴的交点的横坐标为1k a ,其中kN *.若116a ,则123a a a 的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a xa 当0y时,解得2k a x,所以1135,1641212kka a a a a .9.在平面直角坐标系xOy 中,已知圆224x y上有且只有四个点到直线1250x y c 的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13).【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422yx的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线0512cyx 的距离小于1,即1313,13,151222c c c .10.设定义在区间(0,)2上的函数y=6cosx 的图象与y=5tanx 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____.10.【答案】.32【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin x结合图象,数形结合分析P 1P 2的值.xyO 0512cyx1 11【解析】由题意得x x tan 5cos 6,即x x xx xsin 5cos 6,cos sin 5cos 62,226(1sin )5sin ,6sin 5sin 60x x x x 得,32sin x结合图象分析得32sin 21P P x.11.已知函数21,0,()1,0,xx f x x则满足不等式2(1)(2)f x f x 的x 的取值范围是____▲____.11.【答案】).12,1(【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x解得121x ,所以x 的取值范围是).12,1(12.设x,y 为实数,满足3≤2xy ≤8,4≤2xy≤9,则34xy 的最大值是____▲____. 12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]xy,2111[,]83xy,322421()[2,27]xxyyxy,43yx 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.若6cos b a C ab,则tan tan tan tan C C AB的值是▲.【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想.(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A=B 或a=b 时满足题意,此时有1cos 3C,21cos 1tan21cos 2C C C ,2tan22C .等腰三角形中,1tan tan 2tan2A BC ,tan tan tan tan C C AB=4.(方法二)226cos 6cos b a C ab Cab ab,2222222236,22a bccabab abab.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CABCA B C A B C A B,由正弦定理,得上式22222214113cos ()662cc cc C abab .14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s梯形的周长)梯形的面积,则s 的最小值是____▲____.【答案】3233.【解析】考查函数中的建模应用,等价转化思想.设剪成的小正三角形的边长为x ,则222(3)4(3)(01)1133(1)(1)22x x sx xx x .(方法一)利用导数求函数最小值.224(3)()13x S x x,22224(26)(1)(3)(2)()(1)3x x x x S x x 2242(31)(3)(1)3x x x 1()0,01,3S x xx.当1(0,]3x时,()0,S x 递减;当1[,1)3x 时,()0,S x 递增.故当13x时,S 取最小值3233.(方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t ,则2224418668331tS tttt .故当131,83xt时,S 取最小值3233.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A ,(2,3)B ,(2,1).C (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(OC t AB)·OC =0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分.解:(1)由题设知(3,5)AB,(1,1)AC,则(2,6)A B A C ,(4,4).AB AC所以||210AB AC ,||4 2.ABAC 故所求的两条对角线长分别为42,210.(2)由题设知(2,1)OC,(32,5).ABtOCt t由()0AB tOC OC ,得(32,5)(2,1)0t t ,从而511t ,所以11.5t16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分. 解:(1)因为PD ⊥平面ABCD ,BC 平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC. 又PD DC D ,PD平面PCD ,DC平面PCD ,所以BC ⊥平面PCD.因为PC平面PCD ,所以PC ⊥BC.(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F. 易知DF=22.又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍,故点A 到平面PBC 的距离等于2.(方法二)连结AC.设点A 到平面PBC 的距离h.因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC 的面积1ABCS.由PD ⊥平面ABCD 及PD=1,得三棱锥PABC 的体积11.33ABCVSPD因为PD ⊥平面ABCD ,DC 平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以222.PC PDDC由PC ⊥BC ,BC=1,得PBC 的面积2.2PBCS 由11213323PBCVShh ,得2h .因此,点A 到平面PBC 的距离为2.17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=,∠ADE=.(1)该小组已测得一组,的值,算出了tan =1.24,tan =1.20,请据此算出H 的值;。
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。
3一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(e x+ae-x)(xR)是偶函数,则实数a=_______▲_________2y2x6、在平面直角坐标系x Oy中,双曲线1上一点M,点M的横坐标是3,则M到412双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S的值是______▲_______8、函数y=x2(x>0)的图像在点(ak,a k2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____2y29、在平面直角坐标系x Oy中,已知圆x4上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____10、定义在区间0,上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作2PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学I试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第1题一一第14题)、解答题(第15题一一第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4. 请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5. 如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
6. 请保持答题卡卡面清洁,不要折叠、破损。
参考公式:锥体的体积公式:V锥体=1Sh,其中S是锥体的底面积,h是咼。
3一、填空题:本大题共置上14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位1、设集合A={-1,1,3} , B={a+2,a 2+4},A n B={3},则实数a= _▲ _2、设复数z满足z(2-3i)=6+4i (其中i为虚数单位),则z的模为3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲ __.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有▲ 根在棉花纤维的长度小于20mm。
5、设函数f(x)=x(e x+ae-x)(x R)是偶函数,则实数a= ▲____双曲线右焦点的距离是 —▲ _________78、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为 a k+i ,k 为正整数,a i =16, 贝V a i +a 3+a 5= ▲2 29、 在平面直角坐标系 xOy 中,已知圆x y 4上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是 ________ ▲ _____10、 定义在区间 0,于 上的函数y=6cosx 的图像与y=5tanx 的图像的交点为 P ,过点P 作PP 1丄x 轴于点P 1,直线PP 1与y=sinx 的图像交于点 P 2,则线段P 1P 2的长为 ____________▲ _____ 。
x 1,x 0,则满足不等式f (1 x 2) 1, x 02 12、设实数x,y 满足3< xy w 8,34< — w 9,则弓的最大值是y yb a13、在锐角三角形 ABC , A 、B 、C 的对边分别为 a 、b 、c ,6cosC ,则a btanC ta nC = ▲ 。
6、在平面直角坐标系 xOy 中,双曲线2y 121上一点M ,点M 的横坐标是3,则M 到 11、已知函数f (x)f (2 x)的x 的范围是__▲ ____tan A tan B14、将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记、解答题:本大题共 6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文 字说明、证明或演算步骤 15、(本小题满分14分)在平面直角坐标系 xOy 中,点A( — 1, — 2)、B(2,3)、C( — 2- 1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;⑵设实数t 满足(AB tOC ) • OC =0,求t 的值。
16、(本小题满分14分)如图,在四棱锥 P-ABCD 中,PD 丄平面 ABCD , PD=DC=BC=1 , AB=2 ,AB // DC ,/BCD=90°。
(1)求证:PC 丄BC ;⑵求点A 到平面PBC 的距离。
17、(本小题满分14分)某兴趣小组测量电视塔 AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m , 仰角/ ABE= ,/ ADE=。
(1)该小组已经测得一组 、 的值,tan =1.24 , tan =1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离 d(单位:m ),使 与 之差较大,可以提高测量精确度。
若电视塔的r * 产*•rH实际高度为125m ,试问d 为多少时, -最大??J” JJ 」丄口*户r ------------------ Q --------------------*(梯形的周长)梯形的面积2-贝y S 的最小值是18、(本小题满分16分)2 2在平面直角坐标系xoy中,如图,已知椭圆——1的左、右顶点为A、B,右焦点为9 5F。
设过点T( t,m )的直线TA、TB与椭圆分别交于点m>0, y i 0, y2 0。
(1)设动点P满足PF2PB24,求点P的轨迹;(2)设x12,x21,求点T的坐标;3(3)设t 9,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
19、 (本小题满分16分)设各项均为正数的数列a n的前n项和为S n,已知2a2 a1 a3,数列.S n是公差为d的等差数列。
(1)求数列a n的通项公式(用n,d表示);(2)设c为实数,对满足m n 3k且m n的任意正整数m,n, k,不等式S m S n cS k9都成立。
求证:c的最大值为9。
220、 (本小题满分16分)设f (x)是定义在区间(1,)上的函数,其导函数为f'(x)。
如果存在实数a和函数2h(x),其中h(x)对任意的x (1,)都有h(x) >0,使得f'(x) h(x)(x ax 1),则称函数f (x)具有性质P(a)。
(1)设函数f (x) ln x ------------- (x 1),其中b为实数。
x 1(i)求证:函数f(x)具有性质P(b) ;(ii)求函数f(x)的单调区间。
M (捲,%)、N(X2, y2),其中设a 、b 是非负实数,求证:a 3b 3 、、ab(a 2 b 2)。
⑵已知函数g(x)具有性质P(2)。
给定X i ,X 2 (1,)* X 2,设m 为实数,gg) I,求m 的取值范围。
数学n (附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的 答题区域内作答。
若多做,则按作答的前两题评分。
解答时应写出文字说明、证明过程或演算步骤。
A .选修4-1 :几何证明选讲 (本小题满分10分)AB 是圆0的直径,D 为圆0上一点,过 D 作圆0的切线交 AB 延长线于点 C ,若DA=DC ,求证:AB=2BC 。
B .选修4-2:矩阵与变换 (本小题满分10分) 在平面直角坐标系xOy 中,已知点 A(0,0) , B(-2,0) , C(-2,1)。
设k 为非零实数,矩阵k 00 1M=,N=,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为 A 1、B 1、C 1,0 1 1 0△ A 1B 1C 1的面积是厶ABC 面积的2倍,求k 的值。
C .选修4-4:坐标系与参数方程 (本小题满分10分) 在极坐标系中,已知圆p=2cos B 与直线3 p cos 0 +4 p sin 0 +a=0相切,求实数 a 的值。
D .选修4-5 :不等式选讲 (本小题满分10分) mx i (1 m)x 2 ,(1 m)x i mx 2,且 1, 1,[必做题]第22题、第23题,每题10分,共计20分。
请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤。
22、(本小题满分10 分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10% 。
生产 1 件甲产品,若是一等品则获得利润 4 万元,若是二等品则亏损 1 万元;生产 1 件乙产品,若是一等品则获得利润 6 万元,若是二等品则亏损 2 万元。
设生产各种产品相互独立。
(1 )记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产 4 件甲产品所获得的利润不少于10 万元的概率。
23、(本小题满分10 分)已知△ ABC的三边长都是有理数。
( 1 )求证cosA 是有理数;(2)求证:对任意正整数n,cosnA 是有理数。
2010年答案填空题1、[解析]考查集合的运算推理。
3 B, a+2=3, a=12、[解析]考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i与3+2 i的模相等,z的模为2。
3、[解析]考查古典概型知识。
4、[解析]考查频率分布直方图的知识。
100X( 0.001+0.001+0.004 )X 5=30g(x)=e x+ae-x为奇函数,由g(0)=0 ,得a= —1。
> 4 2,d为点M到右准线x 1的距离,d =2,22 5S 1 2 2 L 2 63。
8、[解析]考查函数的切线方程、数列的通项。
在点(a k,a k2)处的切线方程为:y a k2 2a k(x aQ,当y 0时,解得x 专,所以a k 1鱼,a % a516 4 1 21。
29、[解析]考查圆与直线的位置关系。
圆半径为2,圆心(0, 0)到直线12x-5y+c=0的距离小于1,也1310、[解析]考查三角函数的图象、数形结合思想。
线段2 2且其中的x满足6cosx=5tanx,解得sinx= 。
线段P1P2的长为一3 3211、[解析]考查分段函数的单调性。
1 x 2x x ( 1A/21)1 x20 '12、[解析]考查不等式的基本性质,等价转化思想。
x22 1 1 1 x3x22 1 x3, ()[16,81],「[;订],4() 2 [2, 27], 的最大值是27。
y xy 8 3 y y xy y13、[解析]考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。
一题多解。
(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有:cosC 1 2 C 1 cosC,tan -3 2 1 cosC1 C -2tan2 2 25、[解析]考查函数的奇偶性的知识。
6、[解析]考查双曲线的定义。
MFd7、[解析]考查流程图理解。
1 222 L 24 31 33,输出1 , C的取值范围是(-13, 13)。
P1P2的长即为sinx的值,tan A tanBtanC tan Atan C =4。