大气污染物扩散模式
- 格式:ppt
- 大小:520.00 KB
- 文档页数:13
大气污染扩散及浓度估算模式概述大气污染是指空气中某些物质或能量的浓度超过了一定的标准,对人类健康、生态系统和环境产生一定危害的现象。
而大气污染扩散及浓度估算模式则是一种基于数学、物理学原理的模拟工具,用来描述和预测大气污染物在大气中的扩散传播过程及其浓度分布情况。
扩散模式的基本原理大气污染物的扩散传播是受到气象条件、地形地貌、大气污染物排放源等多种因素的影响。
因此,扩散模式一般包括了以下几个基本原理:1.对流扩散:大气中的对流运动是造成大气污染物扩散的主要因素之一。
通过对流运动,大气中的污染物会随着空气的流动在近地层逐渐扩散。
2.湍流扩散:湍流是大气中涡动和乱流的运动形式,对大气污染物的扩散传播起着重要作用。
湍流扩散模式一般基于大气边界层内的湍流动力学理论建立。
3.稳定度影响:大气的稳定度会影响大气污染物的扩散情况。
在稳定的大气层中,扩散较小,而不稳定的大气层则容易形成污染物下沉和较大范围的扩散。
4.地形地貌影响:地形地貌会对大气污染物的扩散产生重要的影响,如山脉、山谷等地形特征会对污染物传播产生局部影响。
浓度估算模式的发展随着大气环境科学的发展和计算机技术的进步,大气污染扩散及浓度估算模式得到了长足的发展。
目前,常用的大气污染扩散及浓度估算模式主要包括了以下几种:1.高斯模型:高斯模型是最简单的扩散模型之一,假设大气污染物的传播呈现高斯分布。
其适用于平坦地形、均匀排放源的情况。
2.拉格朗日模型:拉格朗日模型是一种基于粒子运动轨迹的扩散模式,可以更准确地描述污染物的扩散传播路径。
3.欧拉模型:欧拉模型是一种基于流体动力学方程的扩散模型,适用于描述大气边界层内的湍流扩散过程。
4.数值模拟模型:数值模拟模型是最常用的大气污染扩散及浓度估算模式之一,利用数值计算方法对复杂的大气扩散传播过程进行模拟。
应用及展望大气污染扩散及浓度估算模式在环境保护、城市规划、应急响应等领域具有重要的应用意义。
通过对大气污染物的扩散传播过程进行模拟和预测,可以帮助政府及相关部门制定合理的环境政策和控制措施。
第一节大气污染物的扩散一、湍流与湍流扩散理论1.湍流低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。
风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。
湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。
大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。
所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。
大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。
烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。
烟气在大气中的扩散特征取决于是否存在湍流以及湍涡的尺度(直径),如图5-7所示。
图5-7(a)为无湍流时,烟团仅仅依靠分子扩散使烟团长大,烟团的扩散速率非常缓慢,其扩散速率比湍流扩散小5~6个数量级;图5-7(b)为烟团在远小于其尺度的湍涡中扩散,由于烟团边缘受到小湍涡的扰动,逐渐与周边空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。
实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。
根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。
机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。
CH 4 空氣污染物的擴散模式4-1 高斯分佈函數-常態分佈函數討論:(1) 高斯常態分佈函數之圖形(2) 高斯常態分佈函數之極大值(3) 標準偏差對於高斯常態分佈圖形之影響(4) 高斯常態分佈函數之積分值(5) 不同標準偏差範圍內高斯常態分佈函數之積分值二維高斯常態分佈函數討論:(1) 二維高斯常態分佈函數之圖形(2) 高斯常態分佈函數之極大值(3) 高斯常態分佈函數之積分值4-2 高斯擴散模式討論:(1) C(x,y,z): 污染物在(x,y,z)處之濃度(μg/m3)(2) Q:污染物之排放速率(μg/s)(3) u:水平風速(m/s)(4) δy、δz:水平與垂直擴散係數(m)(5) Η:有效煙囪高度(m)虛點源原理:C(x,y,z)=C1(真實部份)+C2(地面反射部份)範例:已知Q=10 mg/s, x=1500 m, y=20m, z=0m,H=20m, u=2.5 m/s, δy=20m 、δz=50m ,(1) C ? μg/m 3(2) T =20oC, P=1.2 atm, Cs=?(3)污染物為SO2,則C=? ppb4-3 擴散係數(1) 查圖法(圖 4−3.Α 與圖 4−3.Β)δy:水平擴散係數(m) (下風距離 x (km)與穩定度(ABCDEF)) δz:垂直擴散係數(m) (下風距離 x (km)與穩定度(ABCDEF))大氣穩定度(ΑΒCDEF)的判讀方法(表4−3.Β)(2) 公式法δy=ax b、δz=cx d+f, x:公里a,b,c,d:查表4−3.Α(穩定度等級與下風距離)範例:已知x=1.5 km,白天 u=4 m/s,太陽輻射為強。
(1) 請判讀大氣穩定度等級? (表4−3.Β)(2) 請由查圖法判讀δy、δz(圖 4−3.Α 與圖 4−3.Β)(3) 請由公式法求δy、δz(δy=ax b、δz=cx d+f, abcd查表4−3.Α)4-4 有效煙囪高度H=h+ΔHH:有效煙囪高度(m)h:實際煙囪高度(m)ΔH:煙柱上升高度(m)(Plume rise)影響煙柱上升高度之因素:(1) 慣性力(Initial force)(2) 熱浮力(Thermal buoyant force)煙柱上升高度ΔH(m)之估算-Holland 公式d:煙囪直徑(m)u:煙囪口水平風速(m/s)P:大氣壓力(mbar, hPa)T s:廢氣溫度(o K)T∞:大氣溫度(o K)煙柱上升高度ΔH(m)之估算-Carson & Moses 公式Q h:熱能排放速率(KJ/s)R:8.314 kJ/kgmol.K,T:廢氣溫度(o K)M a:廢氣分子量=29P:大氣壓力(kPa)a, b為大氣穩定度之函數(Table 4-4.A)4-5 地面最大濃度1. 微分法使用時機:(1) 中性大氣下可假設δy=kδz)(2) 最大濃度發生於y=0, Z=0 (地面中心線上2. 代數法a,b,c,d 與大氣穩定度有關(表4-5.A)(無法求得X mas)3.圖解法。
大气环境污染物的迁移与扩散大气环境污染物是指在大气中存在的并对环境和人类健康造成负面影响的物质,包括但不限于颗粒物、二氧化硫、氮氧化物、挥发性有机物和重金属等。
这些污染物的迁移与扩散过程对于评估和治理大气污染至关重要。
本文将探讨大气环境污染物的迁移与扩散机制、影响因素及相关治理措施。
一、迁移与扩散机制1.湍流扩散湍流扩散是大气污染物迁移与扩散的主要机制之一。
大气中存在着各种气流运动,如对流和湍流。
污染物的扩散过程会受到这些气流运动的影响,形成不同尺度上的湍流涡旋,使得污染物在大气中的传输产生随机性。
2.稳定层限制稳定层限制是另一个影响大气污染物扩散的重要因素。
稳定层限制时,大气中的温度垂直分布呈现逆温趋势,导致污染物在较低的空间高度上聚集,难以扩散到更高空间层次。
3.地理地形地理地形对大气污染物的迁移与扩散也有显著影响。
山脉、山谷和海洋等地形特征会改变风向和风速,影响大气污染物的传输路径和速度。
二、影响因素1.气象条件气象条件是影响大气污染物迁移与扩散的关键因素之一。
风向、风速、温度和湿度等气象要素都会对污染物的传输路径和速度产生重要影响。
2.排放源强度和位置污染物的排放强度和位置直接决定了污染物释放到大气中的数量和速率。
高排放源和密集排放源会导致周围地区的浓度升高,使得污染物在迁移和扩散过程中产生更大的影响。
3.化学性质不同污染物的化学性质有所不同,这会影响它们的迁移与扩散行为。
一些污染物在不同环境条件下会发生化学反应,形成新的物种,进而影响它们的迁移和扩散特性。
三、治理措施1.源头治理源头治理是最为有效的大气污染物治理措施之一。
通过控制工业排放、交通尾气和机动车污染等措施,减少大气污染物的排放量,从根本上降低污染物的迁移与扩散程度。
2.空气净化技术空气净化技术可以有效去除大气中的污染物,改善空气质量。
常见的空气净化技术包括静电吸附、活性炭吸附和光催化等方法。
3.政策与法规完善的政策与法规对于大气污染物的治理至关重要。
大气污染源排放和扩散模型研究中国是唯一一个承受严重空气污染的国家之一。
大气污染源排放和扩散模型研究是目前解决环境问题最常用的方法之一。
本文将主要探讨大气污染问题、排放和扩散模型以及未来研究方向。
大气污染问题大气污染是一种有害物质向大气中释放的过程,通常包括氧化物、二氧化碳、氨、硫化氢和一氧化碳等。
其中,PM2.5(直径小于2.5微米的颗粒物)是中国大气中最重要的污染物之一,它会进入我们的肺部和血液循环,并且会引起各种健康问题。
此外,VOC(挥发性有机化合物)也是主要污染物之一。
在好氧条件下,VOC会生成O3(臭氧),而O3则会导致人类和动物的空气质量下降,对植物的健康也有很大影响。
最后一种重要污染物是NOx和SO2,主要来自于交通和工业排放。
排放和扩散模型排放和扩散模型是一种建立在物理基础上的计算模型,它可以用来计算某一区域内空气污染源的排放和扩散。
该模型可以模拟理想环境下的指标,如PM2.5、O3、NOx和SO2的浓度。
它的输入参数包括大气运动、地形、气象条件、污染源坐标和排放量。
在模拟过程中,模型可以给出各个站点的污染浓度,以及对健康和环境的影响。
未来研究方向虽然大气污染现象已经被研究了很多年,但仍有很多未解决的问题。
首先,现有的排放和扩散模型对复杂地形和气象条件的适应性较差。
因此,未来的研究需要更多考虑地球物理条件和交通状况等因素,以增强对空气污染的控制。
其次,维护和升级实时监测系统也是一个重要的方向。
实时数据可以使政策制定者及时地了解空气质量状况,从而做出有效的决策。
最后,大气污染的影响范围也是未来研究需要关注的问题。
目前,污染源主要位于工业和交通区域,但由于它们不断扩宽,在未来几十年内可能会达到不确定的程度。
结论空气污染是一个深刻的环境问题,对人类健康和环境产生了极大影响。
排放和扩散模型是减少空气污染的控制手段之一,并可以预测空气污染的发展趋势。
未来的研究需要增强模型对气象和地形条件的适应性,同时需要建立更为全面和实时的监测系统。