(完整word版)概率论与数理统计期末试卷及答案
- 格式:doc
- 大小:293.51 KB
- 文档页数:4
概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)〉0,P (B )〉0,则必有(A )0)(>A B P (B ))()(A P B A P =(C )0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张。
已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0。
06 (C ) 0.07 (D) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A )对任意实数21,p p =μ (B )对任意实数21,p p <μ(C )只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D)1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C )22EY EX = (D ) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0。
《概率论与数理统计》期末考试试题(A)专业、班级: 姓名: 学号:十二总成绩、单项选择题(每题3分共18分)1. D 2 . A 3 . B 4 . A 5 .(1)(2)设随机变量X其概率分布为X -1 0 1 2P则 P{X 1.5}()(A) (B) 1 (C) 0 (D)设事件A与A同时发生必导致事件A发生,则下列结论正确的是((A) P (A) P(A I A2) (B) P(A) P(A i) P(A2)(C) P(A) P(A1 A2) (D) P(A) P(A i) P(A2)设随机变量X~N( 3, 1), Y 〜N(2, 1),且X 与Y相互独7,贝y z~().(A) N(0, 5); (B) N(0, 3); (C) N(0, 46); (D) N(0,54).(5)设 X1X2,未知,贝U(n(A) X i2i 1 ,X n为正态总体N(, )是一个统计量。
(B)(C) X (D)(6)设样本X i,X2,为H o:(A)U(C) 2)的一个简单随机样本,其中2,,X n来自总体X ~ N(0( 0已知)(n 1)S22二、填空题(每空3分xe x 1. P(B) 2. f(x)0 (1) 如果P(A) 0, P(B)H1:(B)(D) 共15分)0, P(A B) 设随机变量X的分布函数为F(x)则X的密度函数f(x)3eP(A)n(X i )i 12), 2未知。
统计假设则所用统计量为(3.1 4.则P(BA)0,1 (1 x)e x, x 0,0.n(X i1P(X设总体X和丫相互独立,且都服从N(0,1) , X1,X2, 样本,丫1,丫2, Y9是来自总体丫的样本,则统计量服从分布(要求给出自由度)。
t(9)2))2X9是来自总体X的X1U肩三、(6 分)设 A, B 相互独立,P(A) 0.7 , P(A B) 0.88,求 P(A B).解:=P(A B) P(A) P(B) P (AB)P(A) P(B) P(A)P(B) ( 因为A, B 相互独立)……..2分求随机变量丫=2X+1的概率密度。
概率论与数理统计期末试卷及答案一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( )4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
华东师范大学期末试卷 概率论与数理统计选择题( 20 分,每题 2 分)已知随机变量 X ~N(0,1),则X 2服从的分布为:6. 设 A,B 都是事件,且它们的概率均大于 0,下列说法正确的是:A .若 AB BA ,则 A=BB 。
若 A,B 互不相容,则它们相互独立C .若 A,B 相互独立,则它们互不相容D .若 P(A) P(B) 0.6,则它们互不相容7. 已知随机变量 X ~ ( ),且 P{X 2} P{X 3},则 E( X ), D( X )的值分别为:8.总体 X ~N( , 2) , 未知, X 1 , X 2 , X 3 , X 4是来自总体的简单随机样本,下面估计量中的哪一个是 的无偏估计量: 、1. 2. 3. 4. 5. A . (1)B 。
2 (1)C 。
N(0,1)D 。
F (1,1)讨论某器件的寿命,设 :事件 A={ 该器件的寿命为 命为 300 小时} ,则:A . A B设 A,B 都是事件,且A.1B.0设 A,B 都是事件,且 1 A.2 200 小时 } ,事件 B ={ 该器件的寿 D 。
ABP(AB) 1, P(A) 0,P(A) 1,则 P(BA)C 。
A BC.0.5D.0.2P(A)1 B.4设 A,B 都是事件,且 P(A) 1 A.21 B.4112 , A,B C.0112 , A,B C.0互不相容,则 P(AB) (1 D.5互不相容,则 P(A B) (1 D.5A.3,3B.9,9C.3,9D.9,3A. T 1 1(X 1 X 2) 1(X 3 X 4) 23 11B. T 2(X 1 X 2 ) (X 3 2X 4) 46C. T 3 1(X 1 2X 2 3X 3 4X 4) 5 1A. T 4 14(X 1 X 2 X 3 X 4 )29. 总体 X ~N( , 2) , 未知, X 1,X 2,X 3, X 4 , X 5是来自总体的简单随机样本,下 列 的无偏估计量哪一个是较为有效的估计量:A. T 1 1(X 1 X 2) 1(X 3 X 4) 1 X 5484B. T 2 41(X 1 X 2) 16(X 3 X 4 X 5)46C. T 3 1(X 1 X 2 X 3 X 4 X 5)5D. T 4 1(X 1 X 2 2X 3 X 4 X 5)6X 1, X 2, X 3, X 4, X 5是来自总体的简单随机样本,S 12 1 (X i X) 2 , S 22 1 (X i X)2 ,n 1 i 1 n i 11n S 32 1 (X i) 2,S 42ni1随机变量是:1 n2 (X i ) 2 ,则服从自由度为 n 1的 t 分布的n i 1B.S 1S 2t X n 1A. t X n 1210. 总体 X ~ N( , 2) , 未知,记 X 1 X i , n i1C. t X nS3S4a A.1 B.. -1 C.a12. 设 A,B 是任意两事件,则 P(A B)B 。
1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
1、 设A 与B 为互不相容的两个事件,0)B (P >,则=)|(B A P 0 。
2、 事件A 与B 相互独立,,7.0)(,4.0)(=+=B A P A P 则 =)(B P 0.5 。
3、 设离散型随机变量X 的分布函数为 0 1-<x=)(x F a 11<≤-xa 32- 21<≤x b a + 2≥x且21)2(==X P ,则=a61 =b , 65。
4、 某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。
5、 设随机变量X 与Y 相互独立,X 服从“0-1”分布,4.0=p ;Y 服从2=λ的泊松分布)2(π,则._______24.2____)(_______,4.2____)(=+=+Y X D Y X E6、 已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =-7、 设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。
8、 设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。
(96.1975.0=u )9、 若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。
一、 计算题(每小题10分,共60分)1、 (10分)已知8只晶体管中有2只次品,从其中取两次,每次任取一只,做不放回抽样。
求下列事件的概率:(1)一只是正品,一只是次品;(2)第二次才取得次品;(3)第二次取出的是次品。
WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。
2021年大学必修概率论与数理统计期末考试卷及答案(完整版)一、单选题1、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C2、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C3、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y =A )1.B )9.C )10.D )6. 【答案】C4、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D5、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值A )与a 无关,随λ的增大而增大B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小 【答案】C6、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
那么对任意给定的a 都有A )()1()af a f x dx-=-⎰ B )01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F 【答案】B7、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C8、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C9、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C10、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A 二、填空题1、θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )
(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )
3311()
()
()
()32
8
168
A B C D
(3)),4,(~2
μN X ),5,(~2
μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >
(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰
-
=-a
dx x f a F 0
)(1)( (B )⎰-=
-a
dx x f a F 0
)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F
(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50
11,50i i X X ==∑ 则 50
21
1()4i i X X =-∑服从分布为( ) (A )4(2,
)50N (B) 2
(,4)50
N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)
(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P
(2) 设随机变量X 有密度⎩
⎨⎧<<=其它01
0,4)(3x x x f , 则使)()(a X P a X P <=>
的常数a =
(3) 设随机变量),2(~2
σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设(
)2
21
x
x f x -+-=, 则EX = , DX =
(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记
0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,
则μ的置信度为0.9的置信区间为
三、解答题 (共60分)
1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率
(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?
2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为
⎩⎨⎧≤≤=.,0;
10,1)(其它x x f X ⎩⎨⎧≤>=-.0,
0;0,)(y y e y f y Y
求:随机变量Y X Z +=的概率密度函数.
3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21X
Y e
-=-服从()0,1上的
均匀分布。
4、(8分)设某次考试考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得
66.5,X =样本标准差为15,问在0.05α=时,是否可以认为这次考试全体考生的平均成
绩为70分?
5、(10分)在抽样检查某种产品的质量时,如果发现次品多于10个,则拒绝接受这批产品。
设产品的次品率为10﹪,问至少应抽查多少个产品进行检查,才能保证拒绝这批产品的概率达到0.9?(()..12909Φ=)
6、(12分)设(X , Y ) 服从二维正态分布,X~N (1 , 9),Y~N (0 , 16),1
2
XY ρ=-
,设32
X Y
Z =
+,求(1)EZ , DZ (2)XZ ρ
(3)X 与Z 是否相关?
标准答案
二、填 空 题(5×4分) 1、 0.1 2、
4
2
1
3、 0.35
4、11,2
EX DX ==
5、33(,)55m b m b -
+或0.050.0533
(,)55
m u m u -+ 三、 解答题(60分)
1、解:A=“生产的产品是次品”,B 1=“产品是甲厂生产的”,B 2=“产品是乙厂生产的”,B 3=“产品是丙厂生产的”,易见的一个划分是Ω321,,B B B (1) 由全概率公式,得
.0345.0%2%40%4%35%5%25)()()()(3
1
31
=⨯+⨯+⨯===
∑∑==i
i i
i i
B A P B P AB P A P
(2) 由Bayes 公式有:111()()
25%5%25
()()
0.034569
P A B P B P B A P A ⨯=
=
=
2、因为X 与Y 相互独立,所以⎰
+∞
∞
--=
dx x z f x f z f Y X Z )()()(
当0≤z 时,;0)()()(=-=⎰+∞
∞
-dx x z f x f z f Y X Z
当10<<z 时,;1)()()(0
)(z z
x z Y X Z e dx e dx x z f x f z f ---+∞
∞
--==-=⎰⎰
当1≥z 时,);1()()()(1
)(-==-=
---+∞
∞
-⎰⎰
e e dx e dx x z
f x f z f z x z Y X Z
所以 ;1)1(10100)()()(⎪⎩
⎪
⎨⎧
≥-<<-≤=-=
--∞
+∞
-⎰
z e e z e z dx x z f x f z f z z Y X Z
3、{}{
}2ln(1)()12X
Y y F y P Y y P e
y P X --⎧
⎫=≤=-≤=≤-⎨⎬⎩
⎭
ln(1)
220,0,
2(01),1, 1.y x y e dx y y y ----∞
<⎧⎪⎪
==≤<⎨⎪
≥⎪⎩
⎰ 1,(01)()()0,,其他。
Y Y y f y F y <<⎧'∴==⎨⎩
4、H 0: μ = μ 0 =70 ①由于σ 2
未知,则令~(1)t t n =
-
②由()2||1,P t t n αα⎧⎫⎪⎪
>-=⎨⎬⎪⎪⎩⎭查表得t 的临界值()()==0.0252
135 2.0301,t n t α-
则拒绝域为{}
2.0301c I t t =≥,
由条件计算出0 1.4t =
=
=-,
由于0 1.4 2.0301,t =<所以接受0t ,即可以认为考生平均成绩为70分。
5、设应抽查n 件产品,其中次品数为Y ,则Y ~B (n ,0.1),
其中.,().011009EY np n DY np p n ===-=,由二项分布的中心极限定理,得
{}
10P Y n P ≤≤=≤≤=Φ-Φ 1
≈-Φ,要使10.9-Φ≥,即0.9Φ≥,查表得
.
129≥,解得147n ≥,即至少要抽查147件产品才能保证拒绝这批产品的概率
达到0.9。
6、(1)(
)32X Y EZ E =+1132EX EY =+111032=⋅+⋅13
= (
)32X Y DZ D =+()()2cov(,)3232X Y X Y D D =++119162cov(,)9432X Y =⋅+⋅+ 52cov(
,)32
X Y
=+,
而()1cov(
,)cov ,326X Y X Y =16XY ρ=11
()3462
=⋅-⋅⋅1=- 52(1)3DZ ∴=+⋅-=
cov ,(2)
XZ X Z ρ=
,而()c o v
,c o v (,)32X Y X Z X
=+11
cov(,)co (,32
v )X X X Y =+ 1132DX =
+⋅()6-1
9303
=⋅-=,0XZ ρ∴= (3)0XZ ρ=Q ,所以X 与Z 不相关。