高考物理 碰撞与动量守恒 经典题目
- 格式:doc
- 大小:125.50 KB
- 文档页数:4
动量知识点应用一、应用动量解释判断现象的例题解析【例1】 如图6-4所示,两小球质量均为m ,A 和B 是完全相同两根绳.若缓慢地竖直拉②球,则绳____先断;若突然快速竖直下拉②球,则绳____先断.解:第一空应填:A ;第二空应填:B .说明 第一空较容易填写,第二空要应用动量定理解释的物理现象.由其表达式F·Δt=Δp 可知.当=∆p 恒定时,tF ∆∝1,即作用时间越短,其相互作用力就越大。
这便是第二种情况,B 绳先断的原因.而此种情况为什么A 绳没先断呢,原因是①球尽管受到B 球较大力的作用,但是作用时间极短(Δt→0),故①球仍保持静止(Δp=0),因此A 绳的形变与原来状态相同,自然不会断.【例2】 质量为1kg 的物体原来静止,受到质量为2kg 的、速度是1m /s 的运动物体碰撞,碰后两物体的总动能不可能是 [ ]A .1JB .43JC .32JD .31J 答案:D .说明 两物体碰撞过程中动量一定守恒,而碰撞后总机械能最大值应与碰撞前相同(发生弹性碰撞,应为1J );最小值应是完全非弹性碰撞时碰撞后系统总的机械能,其值应为:①m 1v 1+m 2v 2=(m 1+m 2)v ②可见,两物体碰撞后总能量为所以,选D项.【例3】如图6-5所示,光滑平板小车质量为M,以速度v匀速运动,质量为m的物块相对静止地放在小车前端后,小车最终速度为[]答案:B.说明当系统所受合外力为零时,系统动量守恒.系统中各物体间的作用力的冲量将使各个物体的动量发生变化,而不能影响系统总的动量.从题中可知小车和物块间水平方向上无力作用,故小车动量不变,保持原来的速度.如认为物块在小车上,小车和物块的动量就要改变,速度就要改变,这是很危险的错误.一定要深刻理解动量定理以及与动量守恒定律关系.二、动量定理应用问题的例题解析【例4】小球质量为m=0.5kg,以v=20m/s的速度垂直打在水平地面上,经Δt=0.2s又竖直弹起,离地速度为v′=10m/s.小球对地面的平均打击力多大?解以小球为研究对象,动量变化时,受力情况如图6-6所示.选取竖直向上为正方向,根据动量定理:F′击Δt-mgΔt=mv′-(-mv)【例5】如图6-7所示,重物质量为m,滑块质量为M,与桌面间动摩擦因数为μ,m由静止释放经t秒落地.绳子的拉力多大?解不论M或m都满足动量定理.以m为研究对象,受力情况如图6-7中所示,以运动方向为正方向,则mg·t-T·t=mv①以M为研究对象,受力情况如图6-7所示,则T·t-μMg·t=Mv②①+②式得mg·t-μMg·t=(M+m)v③由③式得将v值代入①式得说明上面两例意在说明动量定理的解题步骤的可行性:不论单一体或是“连接体”,只要满足动量定理就按动量定理解题步骤处理.从例5中③式可见,“整体法”的应用:将两个物体视为一整体,其方程的建立同样按动量定理解题步骤.注意其内力不做分析.【例6】质量为m A=1kg的木块A和质量为m B=2kg的木块B靠在一起放在光滑水平面上,如图6-8所示.今有一子弹以某一速度射入木块,子弹穿过A木块需时间t A=0.1s,穿过B木块需时间t B=0.2s.若子弹在木块中所受阻力恒为f=3000N,问(1)在0.1s内,木块A对木块B的推力多大?(2)木块B最终速度多大?解(1)子弹刚打入木块A时,木块B只受A对其的推力FAB,根据动量定理,有F AB·t A=m B v A①以A和B两木块为一整体研究,只受子弹作用力f′,则同样根据动量定理,有f′·t A=(m A+m B)v A②由①、②两式解得F AB=2000(N)v A=100(m/s)(2)当子弹由A木块穿出进入B木块时,B木块只受子弹作用力f′作用.则根据动量定理,有:f′·t B= m B v B - m B v A三、动量守恒定律应用问题的例题解析【例7】如图6-9所示,在光滑水平面上停着A、B两小车,质量分别为3kg与2kg,在B车右端有一质量为1kg的物体C,C与B之间的动摩擦因数为0.3,A、B之间用质量不计的细线连接,当使A向右以2m/s速度运动时线突然被拉紧(时间极短),问(1)线拉紧瞬时,B物体的速度多大?(2)C物体速度多大?解(1)以A、B为系统研究,系统动量守恒:m A v A=(m A+m B)v B(2)以A、B、C为系统研究,动量守恒,有m A v A=(m A+m B+m C)v C【例8】质量为M的气球上有一质量为m的人,气球与人共同静止在离地面高H的空气中.如果从气球上放下一条不计质量的细绳,以使人能沿绳安全地滑到地面.绳子至少需要多长?解设需绳长为L,人下滑过程,以气球与人为系统,在竖直方向上动量守恒,人与气球初、末态位置如图6-10所示.可建立方程:说明(1)例7中,A和B相互作用时,尽管B物体受到C物体的摩擦力作用,但作用时间极短,对B物体动量变化无影响.因此,A和B总动量不变.(2)例7在求C物体速度时,A、B、C三物体为系统,摩擦力是内力,不影响系统动量守恒.(3)例8主要强调,如果系统动量守恒,其各个物体的速度可用平均速度代替.计算时必须以地面为参照物.四、动量、机械能、碰撞问题的例题解析【例9】质量为m1的小球以速度v1在光滑平面上向静止在该平面上的、质量为m2的小球碰去(如图6-11所示),求m1和m2发生正碰过程中最大弹性势能.解两球相碰过程中,弹性势能最大时两球间距离最小,速度相同.以m1和m2为系统,水平方向动量守恒,选v1方向为正方向,则根据动量守恒定律,有m1v1=(m1+m2)v①系统机械能守恒:②由①、②式得:解得:【例10】质量为M=16kg的平板车B原来静止在光滑水平面上.另一个质量为m=4kg的物体A以v0=5.0m/s的水平初速度滑上平板车的一端,如图6-12所示.若物体A与平板车间动摩擦因数为μ=0.5,g=10m/s2.要使A不能从B 的另一端落下,B车至少应多长?解当物体A与小车速度相同时,A物体刚好运动至小车最右端,此种情况小车长L为最短长度,则mv0=(M+m)v①由于物体A与小车间有摩擦,因此系统机械能不守恒,发生能量转化,故②由①、②式解得(过程略)L=2(m)【例11】质量为m的滑块与质量为M(M>m)的长木板间的动摩擦因数为μ,滑块与木板一起以v0的速度在光滑的水平面上向右滑行,如图6-13所示.木板到达墙角与墙发生碰撞,碰撞后长木板以原速率弹回,设木板足够长.长木板碰墙后到滑块相对木板静止的整个过程中,滑块(相对地)通过的路程多长?解由题意可知,滑块运动过程是:M与墙相碰后以v0返回向左滑行,而滑块仍以v0向右滑行(因为碰撞时间很短,不能改变m的运动状态).由于摩擦力冲量作用使m速度变为零,然后m随M向左运动,最后相对M静止.因此滑块经过的路程是两个过程滑块经过位移的和(设s1为第一过程位移;s2为第二过程位移).由以上四个式解得【例12】 质量为M ,长为L 的木板上放一滑块m ,今将木板放在光滑的水平面上,用恒力F 推木板(如图6-14所示),滑块m 与木板间动摩擦因数为μ,m 离开木板时速度多大?解 以滑块为研究对象,根据动能定理,有221)(m M mv L s mg =-μ ① 以木板为研究对象,根据动能定理,有221M M M Mv mgs Fs =-μ ② 分别以m 和M 为研究对象,应用动量定理,有μmgt =mv m ③F·t - μmgt =Mv M ④由①、②、③、④联立解得说明 在研究系统动量守恒的同时,要兼顾系统机械能是否守恒.如果两个守恒同时成立,则列方程组:如果动量守恒,机械能不守恒,则列方程组:方程Wf=ΔE中Wf为系统克服内摩擦力所做功.计算时要注意:此功等于摩擦力乘以两物体间相对位移.如果两个守恒定律均不成立,则列方程组:【例13】如图6-15所示,子弹质量为m,以速度v m射向静止在光滑水平面上的质量为M的木块,子弹在木块中运动所受阻力恒为f.欲使子弹穿不出木块,木块的厚度至少多大?解法一设子弹刚好穿不出时木块厚为L,子弹刚好穿不出末速度应与木块相同,则mv m=(M+m)v①②解法二子弹穿不出木块,子弹与木块有共同速度,如图6-15所示,则L=s m - s M①以木块为研究对象,根据动能定理,有②以子弹为研究对象,根据动能定理,有③以子弹和木块为系统研究,动量守恒:mv m=(M+m)v④由①、②、③、④式解得(过程略)说明此题为成题,这里只说明子弹与木块相互作用过程中能量间转化情况.解法二中,③式表示子弹克服阻力做功而动能减少——动能定理.由解法一中②式得即可见,子弹机械能(动能)减少,一部分增加了木块的动能,另一部分转化为系统内能(ΔE内=fL).系统克服阻力做功完成了系统机械能向系统内能的转化.系统克服阻力做功的大小等于系统内能的增加(功能原理).另外,从解法二中可以看到:摩擦力(或介质阻力)可以做正功,也可以做负功.但是摩擦力(或介质阻力)对系统所做功必然是负功.。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高中物理练习题动量守恒与碰撞高中物理练习题:动量守恒与碰撞动量守恒与碰撞是高中物理课程中非常重要的内容之一。
在力学领域,动量守恒定律是一个基本原理,描述了在没有外力作用下,一个系统的总动量保持不变。
本文将通过一些练习题来帮助读者更好地理解动量守恒和碰撞的概念。
1. 弹簧振子的碰撞假设有两个相同质量的弹簧振子,如图所示。
一个振子从左侧以速度v1向右运动,另一个振子从右侧以速度v2向左运动。
两个振子在中间发生完全弹性碰撞后,各自的速度如何?(插入图示)解析:根据动量守恒定律,两个振子的总动量在碰撞前后保持不变。
由于两个振子质量相同,可以得到以下方程:m * v1 + m * v2 = m * v1' + m * v2'由于碰撞是完全弹性碰撞,动能守恒定律也适用。
可得以下方程:1/2 * m * v1^2 + 1/2 * m * v2^2 = 1/2 * m * v1'^2 + 1/2 * m * v2'^2通过解这组方程,可以求出两个振子碰撞后的速度v1'和v2'。
2. 粒子的非完全弹性碰撞现在考虑另一种情况,两个质量不同的粒子发生非完全弹性碰撞。
一个质量为m1,速度为v1的粒子与另一个质量为m2,速度为v2的粒子碰撞后,它们的速度如何?解析:在非完全弹性碰撞中,碰撞过程中会有能量损失。
因此,动能守恒定律不再适用,而动量仍然守恒。
可以得到以下方程:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中v1'和v2'是碰撞后粒子的速度。
由于能量损失,我们无法通过简单的方程求解得到v1'和v2'。
通常情况下,我们需要通过实验或者更复杂的模型来计算非完全弹性碰撞的结果。
3. 碰撞中的力学能量在一维碰撞中,有时候我们需要计算碰撞中的力学能量。
例如,两个物体在碰撞前有不同的高度,我们想要知道碰撞后是否有机械能转化。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高考物理专练题碰撞与动量守恒考点一动量、动量定理1.(2018山西师大附中月考,5)(多选)以下四个图描述的是竖直上抛物体的动量增量随时间变化的图线和动量变化率随时间变化的图线。
若不计空气阻力,取竖直向上为正方向,那么正确的是()答案 CD2.(多选)在2016年里约奥运跳水比赛中,中国跳水梦之队由吴敏霞领衔包揽全部8枚金牌。
假设质量为m 的跳水运动员从跳台上以初速度v 0向上跳起,跳水运动员从跳台上起跳到入水前重心下降H,入水后受水阻力而速度减为零,不计跳水运动员水平方向的运动,运动员入水后到速度为零时重心下降h,不计空气阻力,重力加速度g,则( )A.运动员从跳台上起跳到入水前受到合外力冲量大小m √v 02+2gH +mv 0 B.水对运动员阻力的冲量大小m √v 02+2gHC.运动员克服水的阻力做功mgH+12m v 02D.运动员从跳起到入水后速度减为零的过程中机械能减少量mg(H+h)+12m v 02答案 AD3.(2018云南师大附中月考,25)如图所示,一高h=1.25 m 、质量m B =2 kg 的木块B,在一水平向右的恒力F=3 N 作用下,在水平地面上向右运动。
现将一质量m A =1 kg(可视为质点)的小滑块A 轻轻静置(相对地面的速度为零)于木块B 上距B 左端b=1.00 m 处,一段时间后A 从B 上滑落,从放上A 到A 刚离开B 的时间内,B 向右运动的距离x 0=1.5 m,已知A 与B 间的动摩擦因数、B 与水平地面间的动摩擦因数均为μ=0.10,g=10 m/s 2(结果均保留2位有效数字)。
求(1)整个过程中,A 与B 间由于摩擦产生的热量Q; (2)A 落地时,落地点到B 左端的水平距离s 。
答案 (1)1.0 J (2)0.19 m考点二 动量守恒定律及其应用1.(多选)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前后的位移时间图像。
动量守恒定律应用的各种题型1.两球碰撞型【例题1】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P 1=5kgm/s ,P 2=7kgm/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kgm/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种?A 、m 1=m 2B 、2m 1=m 2C 、4m 1=m 2D 、6m 1=m 2。
★解析:甲乙两球在碰撞过程中动量守恒,所以有: P 1+P 2= P 1,+ P 2,即:P 1,=2 kgm/s 。
由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加。
所以有:22'212'12221212222m P m P m P m P +≥+ 所以有:m 1≤5121m 2,不少学生就选择(C 、D )选项。
这个结论合“理”,但却不合“情”。
因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有2211m P m P 〉,即m 1275m 〈;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即2'21'1m P m P 〈,所以 2151m m 〉。
因此选项(D )是不合“情”的,正确的答案应该是(C )选项。
2、子弹打木块型(动量守恒、机械能不守恒)【例题2】质量为m 的子弹,以水平初速度v 0射向质量为M 的长方体木块。
(1)设木块可沿光滑水平面自由滑动,子弹留在木块内,木块对子弹的阻力恒为f ,求弹射入木块的深度L 。
并讨论:随M 的增大,L 如何变化?(2)设v 0=900m/s ,当木块固定于水平面上时,子弹穿出木块的速度为v 1=100m/s 。
若木块可沿光滑水平面自由滑动,子弹仍以v 0=900m/s 的速度射向木块,发现子弹仍可穿出木块,求M/m 的取值范围(两次子弹所受阻力相同)。
动量守恒定律应用(碰撞)授课内容:例题1、在光滑的水平面上有A、B两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A=5㎏·m/s,p B=7㎏·m/s,如图所示。
若两球发生正碰,则碰后两球的动量增量Δp A、Δp B可能是( )A、Δp A=3㎏·m/s,Δp B=3㎏·m/sB、Δp A=-3㎏·m/s,Δp B=3㎏·m/sC、Δp A=3㎏·m/s,Δp B=-3㎏·m/sD、Δp A=-10㎏·m/s,△p B=10㎏·m/s图一例题2、质量相同的三个小球,在光滑水平面上以相同的速度运动,分别与原来静止的三个小球A、B、C、相碰(a碰A,b碰B,c碰C).碰后a球继续沿原来方向运动;b球静止;c球被反弹而向后运动。
这时A、B、C三球中动量最大的是( )A、A球B、B球C、C球D、条件不足,无法判断例题3、在一条直线上相同运动的甲、乙两个小球,它们的动能相等,已知甲球的质量大于乙球的质量。
它们正碰后可能发生的情况是( )A、甲球停下,乙球反向运动B、甲球反向运动,乙球停下C、甲、乙两球都反向运动D、甲、乙两球都反向运动,且动能仍相等例题4、在光滑水平面上,动能为E0、动量的大小为p0的小钢球l与静止小钢球2发生碰撞.碰撞前后球l的运动方向相反。
将碰撞后球l的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有( )A、E1<E0B、p1<p0C、E2>E0D、p2>p0例题5、在光滑的水平导轨上有A、B两球,球A追卜并与球B正碰,碰前两球动量分别为p A=5㎏·m/s,p B=7㎏·m/s,碰后球B的动量p ’B=10㎏·m/s,则两球质量m A、m B的关系可能是( )A、m B=m AB、m B=2m AC、m B=4m AD、m B=6m A例题6、质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么碰撞后B球的速度大小可能是( )A、13v B、23v C、49v D、89v例题7、如图所示,运动的球A在光滑水平面上与一个原来静止的球B 发生弹性碰撞,A、B质量关系如何,可以实现使B球获得(1)最大的动能;(2)最大的速度;(3)最大的动量。
高考物理《碰撞问题》真题练习含答案1.如图,在光滑水平面上,一质量为100 g 的A 球,以2 m/s 的速度向右运动,与质量为200 g 大小相同的静止B 球发生对心碰撞,撞后B 球的速度大小为1.2 m/s ,取A 球初速度方向为正方向,下列说法正确的是( )A .该碰撞为弹性碰撞B .该碰撞为完全非弹性碰撞C .碰撞前后A 球的动量变化为-1.6 kg·m/sD .碰撞前后A 球的动量变化为-0.24 kg·m/s答案:D解析:以A 球初速度方向为正方向,碰撞过程根据动量守恒得m A v 0=m A v A +m B v B ,解得A 球碰后的速度为v A =-0.4 m/s ,碰撞前后A 球的动量变化为Δp =m A v A -m A v 0=0.1×(-0.4) kg·m/s -0.1×2 kg·m/s =-0.24 kg·m/s ,C 错误,D 正确;碰撞前系统的机械能为E 1=12m A v 20 =12 ×0.1×22 J =0.2 J ,碰撞后系统的机械能为E 2=12 m A v 2A +12 m B v 2B =12×0.1×0.42 J +12×0.2×1.22 J =0.152 J ,由于E 2<E 1,且碰后A 、B 速度并不相同,则该碰撞不是弹性碰撞,也不是完全非弹性碰撞,A 、B 错误.2.[2024·辽宁省沈阳市期中考试]在某次台球比赛中,质量均为m 、材料相同的白球和黑球静止在水平台球桌面上,某时刻一青少年瞬击白球后,白球与一静止的黑球发生了对心碰撞,碰撞前后两球的位置标记如图所示,A 、B 分别为碰前瞬间白球、黑球所在位置,C 、D 分别为碰撞后白球、黑球停止的位置.则由图可知白、黑两球碰撞过程中损失的动能与碰前时刻白球动能的比值为( )A .12B .23C .49D .59答案:C解析:令碰后白球的位移为3x 0,则黑球碰后位移为12x 0,碰撞过程,根据动量守恒定律有m v 0=m v 1+m v 2,碰撞后两球做匀减速直线运动,利用逆向思维,根据速度与位移关系有v 21 =2μg ·3x 0,v 22 =2μg ·12x 0,白、黑两球碰撞过程中损失的动能ΔE k =12 m v 20 -12m v 21 -12 m v 22 ,碰前时刻白球动能E k0=12 m v 20 ,解得ΔE k ΔE k0 =49,C 正确. 3.[2024·北京市顺义区期中考试]如图所示,两物块A 、B 质量分别为m 、2m ,与水平地面的动摩擦因数分别为2μ、μ,其间用一轻弹簧连接.初始时弹簧处于原长状态,使A 、B 两物块同时获得一个方向相反,大小分别为v 1、v 2的水平速度,弹簧再次恢复原长时两物块的速度恰好同时为零.关于这一运动过程,下列说法正确的是( )A .两物块A 、B 及弹簧组成的系统动量不守恒B .两物块A 、B 及弹簧组成的系统机械能守恒C .两物块A 、B 初速度的大小关系为v 1=v 2D .两物块A 、B 运动的路程之比为2∶1答案:D解析:分析可知,物块A 、B 的质量分别为m 、2m ,与地面间的动摩擦因数分别为2μ、μ,因此在滑动过程中,两物块所受的摩擦力大小都等于2μmg ,且方向相反,由此可知系统所受合外力为零,系统动量守恒,A 错误;在系统运动过程中要克服摩擦力做功,系统的机械能转化为内能,系统机械能不守恒,B 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,解得v 1=2v 2,C 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,设A 、B 的路程分别为s 1、s 2,则有m s 1t -2m s 2t=0,解得s 1∶s 2=2∶1,D 正确.4.随着科幻电影《流浪地球》的热映,“引力弹弓效应”进入了公众的视野.“引力弹弓效应”是指在太空运动的探测器,借助行星的引力来改变自己的速度.为了分析这个过程,可以提出以下两种模式:探测器分别从行星运动的反方向或同方向接近行星,分别因相互作用改变了速度.如图所示,以太阳为参考系,设行星运动的速度为u ,探测器的初速度大小为v 0,在图示的两种情况下,探测器在远离行星后速度大小分别为v 1和v 2.探测器和行星虽然没有发生直接的碰撞,但是在行星的运动方向上,其运动规律可以与两个质量不同的钢球在同一条直线上发生的弹性碰撞规律作类比.那么下列判断中正确的是( )A .v 1>v 0B .v 1=v 0C .v 2>v 0D .v 2=v 0答案:A解析:根据题意,设行星的质量为M ,探测器的质量为m ,当探测器从行星的反方向接近行星时(题中左图),再设向左为正方向,根据动量守恒和能量守恒得-m v 0+Mu =Mu ′+m v 1.12 m v 20 +12 Mu 2=12 Mu ′2+12m v 21 ,整理得v 1-v 0=u +u ′,所以v 1>v 0,A 正确,B 错误;同理,当探测器从行星的同方向接近行星时(题中右图),再设向左为正方向,根据动量守恒和能量守恒得m v 0+Mu =Mu ″-m v 2,12 m v 20 +12 Mu 2=12 Mu ″2+12m v 22 ,整理得v 0-v 2=u +u ″,所以v 2<v 0,C 、D 错误.5.如图所示,质量为M 的滑块静止在光滑水平地面上,其左侧是四分之一光滑圆弧,左端底部恰好与地面相切.两小球的质量分别为m 1=2 kg 、m 2=3 kg ,m 1的初速度为v 0,m 2保持静止.已知m 1与m 2发生弹性正碰,要使m 1与m 2发生两次碰撞,则M 可能为( )A .2 kgB .3 kgC .5 kgD .6 kg答案:D解析:m 1与m 2发生第一次弹性碰撞后,设小球m 1与m 2的速度分别为v 1、v 2,则由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,系统机械能守恒,有12 m 1v 20 =12 m 1v 21 +12m 2v 22 ,解得v 1=m 1-m 2m 1+m 2 v 0,v 2=2m 1m 1+m 2v 0;进入四分之一圆弧轨道M ,当m 2离开圆弧轨道时,设m 2的速度为v ′2,根据动量守恒和机械能守恒得v ′2=m 2-M m 2+Mv 2,要使m 1与m 2发生两次碰撞,则v ′2<0,即m >m 2,且|v ′2|>|v 1|,联立解得M >5 kg ,D 正确.6.[2024·浙江省宁波金兰教有合作组织联考]有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L ,已知他自身的质量为m ,忽略船运动过程中水对它的阻力,则可测得船的质量为( )A .m (L -d )dB .m (L +d )dC .m (L +d )LD .mL d答案:A解析:设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人和船的相对位移为L ,人从船尾走到船头所用时间为t ,则v =d t ,v ′=L -d t,人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,A 正确. 7.如图所示,平板小车A 放在光滑水平面上,长度L =1 m ,质量m A =1.99 kg ,其上表面距地面的高度h =0.8 m .滑块B (可视为质点)质量m B =1 kg ,静置在平板小车的右端,A 、B 间的动摩擦因数μ=0.1.现有mC =0.01 kg 的子弹以v 0=400 m/s 速度向右击中小车A 并留在其中,且击中时间极短,g 取10 m/s 2.求:(1)子弹C 击中平板小车A 后的瞬间,A 速度多大?(2)B 落地瞬间,平板小车左端与滑块B 的水平距离x 多大?答案:(1)2 m/s (2)0.4 m解析:(1)子弹C 击中小车A 后并留在其中,则A 与C 共速,速度为v 1,以v 0为正方向,根据动量守恒有m C v 0=(m C +m A )v 1,得v 1=2 m/s(2)设A 与B 分离时的速度分别是v 2、v 3,对A 、B 、C 组成的系统分析,由动量守恒和动能定理得(m A +m C )v 1=(m A +m C )v 2+m B v 3-μm B gL =12 (m A +m C )v 22 +12 m B v 23 -12(m A +m C )v 21 解得v 2=53 m/s ,v 3=23m/s 或v 2=1 m/s ,v 3=2 m/s(舍去,因为A 的速度不能小于B 的速度)B 从A 飞出以v 3做平抛运动,则h =12gt 2 得t =0.4 sA 以v 2向右做匀速直线运动,则当B 落地时,它们的相对位移x =(v 2-v 3)t =0.4 m8.[2024·河北省唐山市一中联盟联考]如图所示,光滑水平面上有一质量M =1.98 kg 的小车,小车上表面有一半径为R =1 m 的14光滑圆弧轨道,与水平轨道在B 点相切,B 点右侧粗糙,小车的最右端D 点竖直固定轻质弹簧片CD .一个质量m =2 kg 的小球置于车的B 点,车与小球均处于静止状态,有一质量m 0=20 g 的子弹,以速度v 0=800 m/s 击中小车并停留在车中,设子弹击中小车的过程时间极短,已知小球与弹簧片碰撞时无机械能损失,BD 之间距离为0.3 m ,小球与水平轨道间的动摩擦因数μ=0.5,g 取10 m/s 2.求:(1)子弹击中小车后的瞬间,小车的速度;(2)小球再次返回圆弧轨道最低点时,小球的速度大小;(3)小球最终相对于B 点的距离.答案:(1)8 m/s (2)8 m/s (3)0.2 m解析:(1)取向右为正方向,子弹打小车过程,子弹和小车系统动量守恒m 0v 0=(m 0+M )v解得v =8 m/s(2)子弹、小车和小球构成的系统动量守恒(m 0+M )v =(m 0+M )v 1+m v 2子弹、小车和小球构成的系统机械能守恒12 (m 0+M )v 2=12 (m 0+M )v 21 +12m v 22 联立可得v 1=0 v 2=8 m/s(3)小球最终状态是三者共速时(m 0+M )v =(m 0+m +M )v 3损失的机械能12 (m 0+M )v 2-12(m 0+m +M )v 23 =μmgs 联立可得s =3.2 m所以相对于B 点的距离是x =s -0.3×10 m =0.2 m9.[2024·江苏省宿迁市月考]如图所示,滑块A 、B 、C 位于光滑水平面上,已知A 的质量m A =1 kg ,B 的质量m B =m C =2 kg.滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v 0=3 m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用,直至分开未与C 相撞.整个过程弹簧没有超过弹性限度,求:(1)弹簧被压缩到最短时,B 物体的速度大小;(2)弹簧给滑块B 的冲量;(3)滑块A 的动能最小时,弹簧的弹性势能.答案:(1)1 m/s (2)4 N·s ,方向向右(3)2.25 J解析:(1)对AB 系统,AB 速度相等时,弹簧被压缩到最短.取向右为正方向,根据动量守恒定律可得m A v 0=(m A +m B )v 1代入数据解得v 1=1 m/s(2)在弹簧作用的过程中,B 一直加速,B 与弹簧分开后,B 的速度最大,取向右为正方向,根据动量守恒定律可得m A v 0=m A v A +m B v B根据机械能守恒定律可得12 m A v 20 =12 m A v 2A +12m B v 2B 联立解得v B =2 m/s对B 根据动量定理可得I =m B v B -0=2×2 N·s -0=4 N·s方向向右;(3)滑块A 的动能最小时速度为零,取向右为正方向,根据动量守恒定律可得m A v 0=m B v ′B 代入数据解得v ′B =1.5 m/s根据功能关系可得E p =12 m A v 20 -12m B v ′2B 代入数据解得E p =2.25 J .。
碰撞与动量守恒
例83:如图所示,位于光滑水平桌面上的小滑块A 和B 都可视作质点,质量相等。
B 与轻质弹簧相连。
设B 静止,A 以某一初速度向B 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( )
A. A 的初动能
B. A 的初动能的1/2
C. A 的初动能的1/3
D. A 的初动能的1/4
练习83、如图所示,在光滑的水平面上放着质量不相等,大小相同的两个物块,开始物体乙静止,在乙上系有一个轻质弹簧。
物块甲以速度v 向乙运动。
甲与轻质弹簧接触后连在一起,继续在水平面上运动。
在运动过程中( )
A .当两者速度相同的瞬间,弹簧一定压缩量最大
B .当两者速度相同的瞬间,弹簧可能伸长最大
C .当一物块静止的瞬间,另一物块的速度一定为v
D .系统的机械能守恒,动量也守恒
练习85、如图所示,在光滑的水平面上有一质量为25kg 的小车B ,上面放一个质量为15kg 的物体,物体与车间的滑动摩擦系数为0.2。
另有一辆质量为20kg 的小车A 以3m/s 的速度向前运动。
A 与B 相碰后连在一起,物体一直在B 车上滑动。
求:
(1)当车与物体以相同的速度前进时的速度。
(2)物体在B 车上滑动的距离。
例86:如图所示的装置中,质量为1.99kg 的
木块B 与水平桌面间的接触是光滑的,质量为10g 的子弹A 以103m/s 的速度沿水平方向射入木块后留在木块内,将弹簧压缩到最短,求弹性势能
的最大值。
22.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2
.求: A B 甲 乙 v 0 A B
(1)弹簧被压缩到最短时木块A的速度;
(2)木块A压缩弹簧过程中弹簧的最大弹性势能.
练习86、如图所示,两个质量都为M的木块A、B用轻质弹簧相连放在光滑的水平地面上,一颗质量为m的子弹以速度v射向A块并嵌在其中,求弹簧被压缩后的最大弹性势能。
v
A B
例76:在光滑水平面上停放着两木块A和B,A的质量大,现同时施加大小相等的恒力F使它们相向运动,然后又同时撤去外力F,结果A和B迎面相碰后合在一起,问A和B合在一起后的运动情况将是()
A.停止运动
B.因A的质量大而向右运动
C.因B的速度大而向左运动
D.运动方向不能确定
例77:质量为M的小车在水平地面上以速度v0匀速向右运动。
当车中的砂子从底部的漏斗中不断流下时,车子的速度将()
A. 减小
B. 不变
C. 增大
D. 无法确定
练习77:一辆小车在光滑的水平上匀速行使,在下列各种情况中,小车速度仍保持不变的是()
A.从车的上空竖直掉落车内一个小钢球
B.从车厢底部的缝隙里不断地漏出砂子
C.从车上同时向前和向后以相同的对地速率扔出质量相等的两物体
D. 从车上同时向前和向后以相同的对车速率扔出质量相等的两物体
例78:分析下列情况中系统的动量是否守恒()
A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组
成的系统
B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)
C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
例81:矩形滑块由不同材料的上下两层固体组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块。
若射中上层子弹刚好不穿出,若射中下层子弹刚好能嵌入,那么( )
A.两次子弹对滑块做的功一样多B.两次滑块所受冲量一样大
C.子弹嵌入上层时对滑块做功多D.子弹嵌入上层时滑块所受冲量大
【答案】本题的正确选项为A、B。
设固体质量为M,根据动量守恒定律有:
mv+
M
=
')
(v
m
由于两次射入的相互作用对象没有变化,子弹均是留在固体中,因此,固体的末速度是一样的,而子弹对滑块做的功等于滑块的动能变化,对滑块的冲量等于滑块的动量的变化,因此A、B选项是正确的。
练习81、一木块静止于光滑水平面上,水平飞行的子弹击中木块后,射入的深度为d1;若两块同样的木块沿子弹射来的方向靠在一起排放,被相同的子弹射中,射入的深度为d2,则有()
A.d1>d2B.d1=d2C.d1<d2D.无法确定
例87:在静止的湖面上有一质量M=100kg的小船,船上站立
质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走
到船尾(如图),船后退多大距离?(忽略水的阻力)
练习87、人从车上练习打靶,车静止在光滑水平面上,人、车、枪、靶的总质量为M。
车上备有n发质量为m的子弹。
枪口到靶的距离为d。
子弹打入靶中就留到靶内,空中最多飞行一颗子弹。
待子弹都打完,车移动的距离多大?
练习题参考答案:
77. BD 81.C 83.BD 85.(1)1m/s (2)0.6m
86.)
2)((22
2m M m M v Mm ++ 87.S =nmd/(M +nm)
.。