旋转复习课
- 格式:doc
- 大小:127.00 KB
- 文档页数:4
姓名:23.1 图形的旋转(复习课)学习内容1.复习旋转的有关概念:旋转,旋转中心,旋转方向,旋转角.2.复习旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应到与旋转中心连线的夹角都等于旋转角;(3)旋转前后的两个图形是全等形.3.利用旋转解决有关的几何问题与实际运用.学习目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.重难点1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.学习过程一、复习导学1.什么叫旋转?什么叫旋转中心?什么叫旋转角?什么叫旋转的对应点?(画图或举实例说明)2.请独立完成:如图,正六边形ABCDEF能否看做是正三角形OAB通过怎样的若干次旋转所形成的图形?3、以点O作为旋转中心把△ABC旋转到△A′B′C′的位置.(1)线段OA与OA′,OB与OB′,OC与OC′有什么关系?(2)∠AOA′,∠BOB′,∠COC′有什么关系?(3)△ABC与△A′B′C′形状和大小有什么关系?归纳:综合以上的实验操作和上题的三个问题你能总结出一些有关旋转的性质吗?(1);(2);(3).二、知识运用:例1.以点O为旋转中心,,画出△ABC绕O点顺时针旋转60°后的图形,(1)点O在三角形内;(2)点O在点C上;(3)点0在三角形外CC(O) C例2.如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点? (2)旋转了多少度?(3)AF 的长度是多少? (4)如果连结EF ,那么△AEF 是怎样的三角形?三、应用拓展例3.如图,正方形ABCD 中,一个以A 为顶点的45°的角绕点A 旋转,在旋转过程各角的边分别交直线BC 、CD 于点E 、F ,连结EF ,(1)当点E 、F 分别在边BC 、CD 边上时,试探究BE+•DF•与EF 的关系.(2)当点E 、F 分别在边BC 、CD 的延长线上时(如图2),还有(1)的关系吗?如果有,请说明理由,如果没有,请探究它们之间的关系,并说明理由。
《图形的平移与旋转复习课》教课方案一、教课目的(一)知识与技术1.知道旋转和平移都不过改变图形的地点,而不改变图形的形状和大小,并能举例说明。
2.掌握平移、旋转的基天性质,并能举例说明。
3.掌握在平面直角坐标系中,平移后的图形与原图形对应点之间的关系,并能举例说明。
4.掌握两个成中心对称图形的特征。
5.梳理本章内容,用适合的方式体现全章知识构造,并与伙伴沟通。
(二)过程与方法经历建立本章知识的网络图,培育梳理知识的能力,核心知识的理解是要点。
(三)感情、态度与价值观1.经历对生活中的典型图案进行察看、剖析、赏识等过程,进一步发展空间观点、加强审盛情识 .2.经过学生之间的沟通、议论、培育学生的合作精神.教课要点:理解平移、旋转与中心对称的观点和性质 . 掌握坐标系中平移、对称的坐标特点。
教课难点:灵巧运用平移、旋转与中心对称的观点和性质解决有关图形问题。
二、教课过程教课过程分为以下几个环节:回首知识、建立网络图、稳固练习、总结概括。
(一)回首知识依据以下问题,回首本章知识。
1.平移能否改变图形的地点、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基天性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有如何的关系?请举例说明.4.两个成中心对称的图形有哪些特征?中心对称图形有哪些特征?知识点概括:( 1)平移平移的观点:在平面内,将一个图形沿着某个方向挪动必定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连结各组对应点所得的线段相互平行且相等。
(2)旋转旋转的观点:把一个图形绕一个定点转动必定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角相互相等。
(3)轴对称:假如一个图形沿一条直线折叠后,直线两旁的部分可以重合,那么这个图形叫做轴对称图形。
23章、旋转复习课知识点1、旋转的性质:1、对:应点到旋转中心的距离」§»・2、对应点与旋转中心所连线段的夹角等于3、旋转前、后的图形」例1、如图所示,方格纸中的每个小方格都是边长为1个单位的正方形,/?松ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3f l)f点C 的坐标为(-3,3).⑴将&A ABC沿x轴正方向平移5个单位得到, 试在图上画出/?松人芒£],并写出点A】的坐标;⑵将原来的恥ABC绕点B顺时针旋转90°得到/?^A2B2C2,试在图上画出/?fAA2B2C2.解:(1)A( - l f l) f如下图;(2)如下图:知识点2、中心对称的性质与判定:性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,并且被平分;(2)中心对称的两个图形是全等图形判走:如果两个图形的对应点连线都经过某一点,并且被这_点平分,那么这两个图形关于这点对称•知识点3、中心对称图形:把一个图形绕着某一个点旋转180。
,如果旋转后的图形能够与原来的图形那么这个图形叫做中心对称图形,这个点叫做它的对称中心是(例:下列图形中,是中心对称图形但不是轴对称图形的A B c D知识点4、关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号相反,即点P(x , y)关于原点的对称点为P,U - y)例3、已知a vO ,则点P(・a2厂a + l)关于原点的对称点P】在(D )A•第一象限B.第二象限C.第三象限D.第四象限跟踪练习:1、从一副扑克牌中抽出如下四张牌,其中是中心对称图形2、在方格纸上建立如图所示的平面直角坐标系,将A ABO绕点O按顺时针方向旋转90。
,得A A B O f求点A的对应点A,的坐标.3、如图所示,把一个直角三角尺ACB绕着30。
角的顶点B 顺时针旋转,使得点A与CB的延长线上的点E重合.(1) 三角尺旋转了多少度?(2) 连接CD ,试判断2DB的形状;⑶求,BDC的度数•通过本节课的学习你收获了什么?作业布置测试卷。
复习旧知检测反馈1.复习旋转概念与性质;2.讲评课前导学情况;3.检测反馈(1)如图,△ABC和△ADE均为正三角形,则图中可看作是旋转关系的三角形是().A.△ABC和△ADEB.△ABC和△ABDC.△ABD和△ACED.△ACE和△ADE(2)如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠DAE= ∠BAC,若∠DBA=25°,则∠ECA=().A.30°B.25°C.20°D.5°(3)如图,△ADN是直角三角形,将△ADN绕点A顺时针旋转90°后,能与△ABE重合,如果AN=4,那么EN=______.教师将第3题图中的EB,DN延长,相交于点C,则得到正方形ABCD,引出“半角模型”。
1.根据图形,复习旋转的概念和性质。
2.让学生进行自我纠正。
3.(1)使用互动课堂的随机挑人功能,检测基本知识点的掌握情况;(2)HiTeachTBL2的IRS即时反馈,检测学生的知识运用情况;(3)使用抢答功能,进一步巩固旧知。
1.电子白板标注。
2.让学生对导学单里的题目进行自我纠正,进一步加深学生对旋转概念、性质的理解。
3.(1)互动课堂的随机挑人功能,可以保证所有学生都有机会被抽到,能较客观地反映学生对基础知识的掌握情况;(2)IRS即时反馈,能及时检测学生的知识运用情况,便于教师及时调整教学策略;(3)使用抢答功能,进一步巩固旧知的同时,也能激发学生的学习兴趣。
第1题图第3题图EB CAD第2题图AM AM '=组织交流 释疑拓展1.如图,在正方形ABCD 中,∠MAN =45°,当∠MAN 绕点A 顺时针旋转到如图的位置时,它的两边分别交CB ,DC 于点M ,N .线段BM ,DN 和MN 之间有怎样的数量关系?写出猜想,并给予证明.几何画板演示旋转动画,并提示学生是否有其他做法?2.将第二种证法设置成选择题,及时 检测学生对“半角模型”解题方法的 理解程度。
第二十三章旋转单元复习教案教案标题:第二十三章旋转单元复习教案教案目标:1. 复习第二十三章旋转单元的关键概念和重要知识点;2. 强化学生对旋转单元的理解和应用能力;3. 提供多样化的学习活动,培养学生的合作与创造能力;4. 激发学生对数学学习的兴趣和自信心。
教学准备:1. 教材:包含第二十三章旋转单元的教材;2. 学习资源:计算器、白板、标尺、图形工具等;3. 学生资源:学生教材、练习册、作业本等;4. 教学辅助工具:PPT、视频等。
教学过程:引入活动:1. 利用一张PPT或者一段视频引入旋转单元的概念,激发学生的学习兴趣。
2. 引导学生回顾前几章的知识,如平移、缩放等,与旋转单元进行对比。
知识点复习和讲解:1. 复习旋转单元的基本概念和术语,如旋转中心、旋转角度等。
2. 讲解旋转单元的性质和特点,如旋转对称、旋转不变等。
3. 通过示例和图形展示,讲解旋转单元的计算方法和公式。
练习活动:1. 分组讨论:将学生分成小组,让他们在小组内共同解决一些旋转单元的实际问题,如旋转图形的面积计算、旋转体的体积计算等。
2. 个人练习:发放练习册或者作业本,让学生进行个人练习,巩固旋转单元的计算方法和应用能力。
3. 案例分析:给学生提供一些旋转单元的实际案例,让他们进行分析和解决,培养学生的问题解决能力和创造力。
总结和评价:1. 学生展示:让学生展示他们在练习活动中的解决方法和答案,进行互相评价和讨论。
2. 总结复习:总结本节课的重点知识和方法,澄清学生的疑惑和困惑。
3. 课后作业:布置相关的课后作业,巩固学生对旋转单元的理解和应用能力。
教学扩展:1. 拓展学习:引导学生进一步了解旋转单元在实际生活中的应用,如建筑设计、机械制造等领域。
2. 探究学习:鼓励学生自主探究旋转单元的性质和特点,提出自己的问题和解决方法。
教学反思:1. 教学方法:根据学生的学习特点和需求,选择合适的教学方法,如合作学习、探究学习等。
九年级数学第二十三章旋转测试题(A)
45分钟 100分
一、选择题(每小题3分,共33分)
1.下列正确描述旋转特征的说法是()
A.旋转后得到的图形与原图形形状与大小都发生变化.
B.旋转后得到的图形与原图形形状不变,大小发生变化.
C.旋转后得到的图形与原图形形状发生变化,大小不变.
D.旋转后得到的图形与原图形形状与大小都没有变化.
2.下列描述中心对称的特征的语句中,其中正确的是()
A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心
B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段
C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.(2005·福建南平)
4.下列图形中即是轴对称图形,又是旋转对称图形的是()
A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)
5.下列图形中,是中心对称的图形有()
①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
A.5个 B.2个 C.3个 D.4个
6.(2005·甘肃平凉)在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)
7.将图形
按顺时针方向旋转900后的图形是( )
A B C D
图23—A—2
图23—A—1
8.将一图形绕着点O 顺时针方向旋转700后,再绕着点O 逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度? ( ) A 、顺时针方向 500 B 、逆时针方向 500 C 、顺时针方向 1900 D 、逆时针方向 1900
9.如图23—A —3所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是( )
A .l 个
B .2个
C .3个
D .4个 10.(2005·江苏苏州)如图23—A —4,ΔABC 和ΔAD
E 都是等腰直角三角形,∠C 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转后能够与ΔADE 重合得到图23—A —4,再将图23—A —4作为“基本图形”绕着A 点经过逆时针连续旋转得到图23—A —5.两次旋转的角度分别为( ).
A .45°,90°
B .90°,45°
C .60°,30°
D .30°,60°
11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为( )
A .︒30
B .︒60
C .︒120
D .︒180 二、填空题(每小题3分,共21分)
图23—A —4
图23—A —5
图23—A —
6
12.一条线段绕其上一点旋转90°与原来的线段位置关系.
13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.
14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
15.如图23—A—7所示,在四边形ABCD中,AD∥BC,BC>
AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,
则△EFG为________三角形,若AD=2cm,BC=8cm,则
FG=____________。
16.△ABC是等边三角形,点O是三条中线的交点,△ABC以
∠BAD=30°,
按逆时针方向
___________。
三、作图题(12分)
19.在图23—A—10中,把△ABC向右平移
5个方格,再绕点B的对应点顺时针方向旋转
90度.
(1)画出平移和旋转后的图形,并标明对
应字母;
(2)能否把两次变换合成一种变换,如
C
B
A
图23—A—10
图23—A—7
果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.
四、解答题(第20小题10分,21、22小题各12分,共34分)
20.观察如图23—A—11所示的图形是否有其中一个图形,是另一个图形经旋转得到的.
21.你能分析出图23—A—12中旋转的现象吗?
22.已知如图23—A—13,△ABC是等腰直角三角形,∠C直角.
(1)画出以A为旋转中心,逆时针旋转45°后的图形.
(2)指出面ABC三边的对应线段.。