椅子能在不平的地面上放稳吗
- 格式:doc
- 大小:72.00 KB
- 文档页数:4
数学建模作业长⽅形椅⼦能否在不平的地⾯上放稳吗
其次,把椅脚是否着地⽤数学形式表⽰出来.
我们知道,当椅脚与地⾯的竖直距离为零时,椅脚就着地了,⽽当这个距离⼤于零时,椅脚不着地.由于椅⼦在不同的位置是θ的函数,因此,椅脚与地⾯的竖直距离也是θ的函数.
由于椅⼦有四只脚,因⽽椅脚与地⾯的竖直距离有四个,它们都是θ的函数.⽽由假设(3)可知,椅⼦在任何位置⾄少有三只脚同时着地,即这四个函数对于任意的θ,其函数值⾄少有三个同时为0.因此,只需引⼊两个距离函数即可.考虑到长⽅形ABCD是中⼼对称图形,绕其对称中⼼ O沿逆时针⽅向旋转180°后,长⽅形位置不变,但A,C和B,D 对换了.因此,记A、B两脚与地⾯竖直距离之和为f(θ),C、D两脚与地⾯竖直距离之和为g(θ),其中θ∈[0,π],从⽽将原问题数学化。
数学模型:已知f(θ)和g(θ)是θ的⾮负连续函数,对任意θ,f(θ)?g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g (θ0)=0成⽴。
问题:椅子能在不平的地面放稳吗?
模型假设对椅子和地面应该做出一些假设:
1.椅子四条腿一样长,椅子与地面接触可视为一个点,四角的连接呈长方形。
2.地面的高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可以视为数学上的连续平面。
3.对于椅子腿的间距和椅子腿的长度而言地面是相对平坦的,使椅子腿在任何地方都有三个腿同时着地。
分析:
当椅子放稳时应为椅子的四条腿同时着地(即椅子的四条腿脚与地面的的距离为零)
如图建立直角坐标系,A、B、C、D为椅子的四条腿脚与地面的接触点。
表示在椅子不稳的情况下将椅子绕0点旋转角度后椅子的位置,不同的则表示椅子不同的位置。
问题:
是否存在一使得椅子的四条腿与地面的距离为零。
与假设三:记为椅子旋转角度时A、C两点(腿)到地面的距离之和记为椅子旋转角度时B、D两点(腿)到地面的距离之和对,=0
有假设二和都是在区间上的连续函数(地面是连续变化的)
由假设三不妨设:=0时有这样改变椅子的位置就可以使椅
子四只脚同时着地。
归结出数学命题:
已知和是的连续函数。
对,=0 且
证明存在,使得
模型求解:
如图(2)为将椅子旋转(两对角线之夹角)角度后,对角线BD覆盖到原先对角线AC 的位置上,而AC 则旋转出一新的位置。
由可知
令则有
的连续性可知也是连续函数,根据连续函数的基本性质
比存在使得
即有
肯定存在一位置可以使得四条腿同时着地放稳椅子,即椅子可以在不平的地方放。
其次要把椅脚着地用数学符号表示出来。
椅子在不同位置时椅脚与地面的距离不同,当距离为0时,就是椅子四只脚着地,所以这个距离就是椅子位置变量θ的函数。
虽椅子有四只脚,四个距离,但由长方形是中心对称图形可用两个距离函数就行了。
A,C 两脚与地面的距离之和为()f θB,D 两脚与地面的距离之和为()g θ由假设2知道地面为连续曲面所以()f θ,()g θ是连续函数。
由假设3可得对于任意的θ,()f θ,()g θ至少一个为0。
可以假设(0)f =0,(0)g 〉0,而当椅子旋转180度后,对角线AC ,BD 互换,于是()f π〉0,()g π=0。
这样,改变椅子的位置使四只脚着地,就归结为证明如下的数学问题:已知()f θ,()g θ是θ的连续函数, 对任意的θ,()f θ*()g θ=0,而且()(0)0f g π==, (0)0,()0f g π>>。
证明存在0θ,使(0)(0)0f g θθ==。
五、模型求解(显示模型的求解方法、步骤及运算程序、结果)令()()()h f g θθθ=-,则(0)0h <和()0h π>。
由f 和g 的连续性知h 也是连续函数。
根据连续函数的基本性质,比存在0(0)θθπ<<使得(0)0h θ=,即(0)(0)f g θθ=。
最后因为(0)*(0)0f g θθ=,所以(0)(0)0f g θθ==。
文案 编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
长方形椅子能否在不平的地面上放稳吗?模型假设为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设:(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断.(3)椅子在任何位置至少有三只脚同时着地.建立模型椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.设A、C两脚与地面竖直距离之和为f(θ),B、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f (θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。
求解模型如果f(0)=g(0)=0,那么结论成立。
如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。
这时,将长方形ABCD绕点O逆时针旋转角度π后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f(π)=g(0),g(π)=f (0).而由f(0)>0,g(0)=0,得g(π)>0, f(π)=0。
令h(θ)=f(θ)-g(θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。
又h(0)=f(0)-g(0)>0,h(π)=f(π)-g(π)<0,,根据连续函数介值定理,必存在θ0∈(0,π)使得h(θ0)=0,即f(θ0)=g(θ0);又因为f(θ0)•g(θ0)=0,所以f(θ0)=g(θ0)=0。
数学建模作业1(长方形椅子能否在不平的地
面上放稳吗)
-CAL-FENGHAI.-(YICAI)-Company One1
四、模型建立
(显示模型函数的构造过程)
在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.
首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.
如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.
其次,把椅脚是否着地用数学形式表示出来.
我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ。
椅子能在不平的地面上放稳吗?把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明.一、 模型假设对椅子和地面都要作一些必要的假设:1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形.2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面.3. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位臵至少有三只脚同时着地.二、模型建立中心问题是数学语言表示四只脚同时着地的条件、结论.首先用变量表示椅子的位臵,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位臵的改变,于是可以用旋转角度θ这一变量来表示椅子的位臵.其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位臵说明这个距离是位臵变量的函数.由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位臵使四只脚同时着地,就归结为如下命题:命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g .三、模型求解将椅子旋转90︒,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ⨯=,所以()()000==θθf g .四、评 注模型巧妙在于用一元变量θ表示椅子的位臵,用θ的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转90︒并不是本质的,同学们可以考虑四脚呈长方形的情形.长方形椅子能否在不平的地面上放稳吗?【问题提出】日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释.【模型假设】为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设:(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位臵至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的.【建立模型】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位臵的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O 旋转,这可以表示椅子位臵的改变。
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学的实践与认识MATHEMATICS IN PRACTICE AND THEORY1999 Vol.29 No.3 P.62-65在不平地面上把椅子放稳的充分必要条件赵彦晖摘 要:把椅子放在不平的地面上,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地、放稳.本文指出,当且仅当椅子的四脚共圆时,才能在一般不平的地面上放稳,并对此建立了数学模型,给出了理论上的证明.关键词:椅子:不平地面;放稳;充分必要条件;数学模型The Sufficient and Necessary Condition toMake a Chair Steady on Uneven GroundZhao Yanhui(Xi′an Univ. of Arch. & Tech., Xi′an 710055)Abstract:Under normal conditions, it is impossible to make a chair Steady on uneven ground. In this paper, a mathematical model on this question is established, and it is proved that a sufficient and necessary conditon to make the chair Steady on uneven ground is four feet of the chair is on the common circle. Keywords:Chair, Uneven Ground, Stendy, Sufficient and Necessary Condition, Mathematical Model▲ 在不平的地面上能否把椅子放稳问题已在文[1]、[2]中作过介绍,但这些文献中都只就四脚连线呈正方形(或长方形)的椅子进行讨论.众所周知,我们日常生活中所遇到的椅子大都是四脚连线呈等腰梯形的椅子,那么,对这样的椅子甚至四脚连线为任意四边形的椅子是否也能在不平的地面上放稳?文[1]、[2]中并未讨论,也没有作出任何结论.对此,本文进行了全面的讨论,给出了完整的结论,使问题得到了圆满的解决.1 模型假设 首先讨论四脚共圆的椅子,对此,我们作如下的必要假设: 假设1 椅子四条腿一样长,椅脚与地面接触处可视为一个点,椅子四脚连线为圆内接四边形 即椅子四个脚共面且共圆. 假设2 地面高度是连续变化的,即地面可视为数学上的连续曲面. 假设3 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 上述假设显然是合理的[1].2 模型建立 将椅子放在地面上任一位置,并使至少三只脚同时着地.这时以椅子四脚共圆的圆心O为原点,四脚所在的平面为xoy坐标面,并使椅脚之一(如椅脚A)在x轴的正半轴上建立平面坐标系,如图1.图1 由假设1,椅子四脚A、B、C、D共圆,设其圆的半径为R,则这四点必在圆周x2+y2=R2 (1)上,且各点的坐标分别为A(R,0),B(Rcosθ1,Rsinθ1),C(Rcosθ2,Rsinθ2),D(Rcosθ3,Rsinθ3),其中θ1,θ2,θ3分别为OB、OC、OD与OA的夹角.显然,这三个夹角应满足条件0<θ1<θ2<θ3<2π (2) 如果让椅子绕O点转动,则A、B、C、D四点将同时绕O点转动,并且转过同样的角度.设转过的角度为θ(取逆时针方向为正),则转动后A、B、C、D四点对应的坐标分别为见图2.这样,参数θ就决定了椅子的位置.图2 由假设2,地面可视为数学上的连续曲面,因此,如果取过原点O,垂直于上述xoy面向上的轴为oz轴,则在如此选取的oxyz空间直角坐标系下,地面的方程便可写成z=f(x,y) (4)其中f(x,y)是x,y的二元连续函数.特别地,在圆周(1)上,z必为极角θ的以2π为周期的单值连续函数z=φ(θ) (5)于是,在空间直角坐标系下,地面上与(3)中A′,B′,C′,D′对应的点分别为 由假设3,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地.这样,改变椅子位置(即让椅子绕O点转动)能否使四脚同时着地的问题就归结为求解是否存在θ∈[0,2π]使(6)中A"、B"、C"、D"四点共面.这就是我们对该问题建立的数学模型.3 模型求解 上面所建立的数学模型即证明下面的定理 定理1 设φ(θ)是以2π为周期的连续函数,R>0,θ1,θ2,θ3是满足不等式(2)的任意常数,则一定存在θ0∈[0,2π],使当θ=θ0时(6)中A",B",C",D"四点共面. 证 A",B",C",D"四点共面的充要条件是 (7)记,则直接计算可知将F(θ)在[0,2π]上积分,注意到φ(θ)是以2π为周期的连续函数,R,θ1,θ2,θ3均为常数,则立可得出于是,由积分中值定理知,存在θ0∈[0,2π],使这说明,当θ=θ0时(7)式成立.从而,当θ=θ0时(6)中A",B",C",D"四点共面. 定理1说明,对四脚共圆的椅子,在不平的地面上,总可以经适当旋转把椅子放稳.4 放稳椅子的充要条件 前面,我们对四脚共圆的椅子进行了讨论,并建立了数学模型.那么,对四脚不共圆的椅子是否也能在一般不平的地面上放稳呢?回答是否定的,其反例如下: 例 设椅子的四脚共面但不共圆,地面为半径充分大的球面,则这样的椅子在相应的地面上总放不稳. 证 (用反证法) 假设在这样的球面上存在四点A、B、C、D使椅子的四脚在这四点同时着地,则这四点必共面,即在同一平面上.从而,这四点必在此平面与球面的交圆上,亦即,这四点必共圆.这就与椅子四脚不共圆矛盾,这个矛盾说明假设错而该例的结论真. 此例说明,当椅子四条腿一样长但四脚不共圆时,无论怎么放,也不可能在球面型的地面上放稳.而由前三部分所建立的数学模型及讨论说明,当椅子四条腿一样长且四脚共圆时,对任意的连续平坦地面,无论在何处,都可以经适当旋转把椅子放稳.这样,我们就证明了下面的结论: 定理2 在不平的地面上把椅子放稳的充分必要条件是椅子的四脚共圆.5 模型应用 椅子问题虽然是日常生活中一件非常普通的事,但在上段就一般椅子给出的结论对实践却有指导性的意义.通常,在制作椅子时,我们事先并不知道要把椅子放在什么样的地面上,因此,我们无法也不可能对地面提出任何要求,但为了保证椅子将来能在任何连续平坦的地面上放稳,我们可对椅子的设计提出一定的要求,这个要求就是,必须且只需把椅子做成四脚共圆或四脚连线呈圆内接四边形的形式.这也正好说明我们的祖先为什么都把椅子做成了正方形,长方形和等腰梯型,其原因就是它们都是圆内接四边形,这样的椅子能放稳. 当然,上述结论不只是对制作椅子有用,而对四脚共面的所有物体,如桌子,家用电器,甚至送上月球的四脚机器或设备等,都有设计方面的应用价值.■作者单位:赵彦晖(西安建筑科技大学,西安,710055)参考文献:[1]姜启源、数学模型,第二版,高等教育出版社,1993:8-11.[2]W.F.Lucas:Discrete and System Models.Springer-Verlay,1983收稿日期:1998-7-20在不平地面上把椅子放稳的充分必要条件作者:赵彦晖, Zhao Yanhui作者单位:西安建筑科技大学,西安,710055刊名:数学的实践与认识英文刊名:MATHEMATICS IN PRACTICE AND THEORY年,卷(期):1999,29(3)被引用次数:0次1.姜启源数学模型 19932.W F Lucas Discrete and System Models 1983本文链接:/Periodical_sxdsjyrs199903014.aspx授权使用:东北师范大学图书馆(dbsdt),授权号:d07db1fe-35e1-4bd7-bb46-9df1010755d9下载时间:2010年9月14日。
椅子能在不平的地面上放稳吗?把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。
下面用数学语言证明。
一、 模型假设对椅子和地面都要作一些必要的假设:1、 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形。
2、 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。
3、 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
二、模型建立中心问题是数学语言表示四只脚同时着地的条件、结论。
首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。
其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。
椅子要挪动位置说明这个距离是位置变量的函数。
由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。
当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。
三、模型求解将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。
令()()()h f g θθθ=-,则()()02,00<>πh h ,由f 、g的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。
椅子能在不平的地面上放稳吗?
把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。
下面用数学语言证明。
一、模型假设
对椅子和地面都要作一些必要的假设:
1、椅子四条腿一样长,椅脚与地面接触可视为
一个点,四脚的连线呈正方形。
2、地面高度是连续变化的,沿任何方向都不会
出现间断(没有像台阶那样的情况),即地面可
视为数学上的连续曲面。
3、对于椅脚的间距和椅脚的长度而言,地面是
相对平坦的,使椅子在任何位置至少有三只脚同
时着地。
二、模型建立
中心问题是数学语
言表示四只脚同时着地的条件、结论。
首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。
其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。
椅子要挪动位置说明这个距离是位置变量的函数。
由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、
()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。
当0=θ
时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题:
命题 已知()θf 、()θg 是
θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。
三、模型求解
将椅子旋转0
90,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。
令()()()θθθf g h -=,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。
四、评 注
模型巧妙在于用已元变量θ表示椅子的位置,
用
的两个函数表示椅子四脚与地面的距离。
利用
正方形的中心对称性及旋转
90并不是本质的,同
学们可以考虑四脚呈长方形的情形。