初一数学上册第一-三章检测题
- 格式:doc
- 大小:80.99 KB
- 文档页数:2
七年级数学上册第1-3单元测试题(满分100分,时间100分钟)姓名分数一、填空题(每空2分,共20分)1、一群整数朋友按照一定的规律排成一列,可排在____位置的数跑掉了,请帮它们把跑掉的朋友找回来:(1)5,8,11,14,________,20.(2)1,3,7,15,31,63,__________.(3)1,1,2,3,5,8,_______,21.2、电梯上升20米记作+20米,那么电梯下降8米记作_________米.3、检查商店出售的袋装白糖,白糖加袋按规定重503克,一袋白糖重502克,就记作-1克,如果一袋白糖重505克,那么应记作__________克.6、世界最高峰珠穆朗玛峰海拔高度8848米,陆上最低处位于亚洲西部死海湖,湖面海拔高度-392米,则两处高度差为________米.7、小于5而大于-4的所有偶数之和是_________.8、若|x-1|+|y+2|=0,则|x|+|y|=_______.9、计算:(-0.125)7·88=________.10、在某地,人们发现蟋蟀叫的次数与温度有某种关系,用蟋蟀1分钟叫的次数n除以7,然后再加上3就可以近似地得到该地当时的温度(℃),若某天蟋蟀1分钟叫100次,则该地当时的温度约为__________℃(精确到个位)。
二、选择题(每题2分,共40分)11、规定一种运算:A*B=,则10*2的结果是().A、12B、20C、6D、1012、用两个3、一个5、一个7可以组成各种不同的四位数,这些四位数共有()个.A、6B、10C、11D、1213、如果有2004个同学站成一排,按1,2,3,4,3,2,1,2,3,4,3,2,1,……的规律报数,那么第2003个学生报的数是().A、1B、2C、3D、414、下列说法中错误的一个是().(A).一个数不是正数就是负数(B).正数都大于0(C).0.1是一个正数(D).自然数一定是非负数15、下列说法中正确的是().(A).整数包括正整数和负整数(B).0是整数,也是自然数(C).分数包括正分数、负分数和0(D).有理数中,不是负数就是正数| ( ( 16、若 ab >0,则下列结论正确的是( ). (A)a >0,b >0 (B) a ,b 同号 (C)a ,b 异号 (D)a <0,b <0 17、下列判断中错误的是( ).(A).一个正数的绝对值一定是正数 (B).一个负数的绝对值一定是正数 (C).任何数的绝对值都不是负数 (D).任何数的绝对值一定是正数 18、下列说法正确的是( ). (A).两数相加,其和大于任何一个加数(B).异号两数相加,其和等于任何一个加数 (C).两数相加,取较大一个加数的符号(D).若两个数互为相反数,则这两个数的和为 019、两个有理数的和比其中任何一个加数都大,那么这两个数( ). (A).都是负数 (B).以上都不对 (C).都是正数 (D).一个正数,一个负数 20、保留三个有效数字得到 17.8 的数是( ). (A).17.86 (B).17.88 (C).17.74 (D).17.82 21、近似数 2.230×103 精确到( ).(A).千分位 (B).个位 (C).十分位 (D).百分位 22、在(-3)2,-22, -2|, -1)3 ,-|-2|, -1)2n -1 (n 为正整数)中,负数有( ). (A).4 个 (B).3 个 (C). 2 个 (D).1 个23、如图,右图方格中的任一行、任一列及对角线上的数的和相等,则 m 等于( ).(A).9 (B).10 (C).13 (D) .无法确定12 11 16m1524、一个点,从数轴的原点开始,先向右移动 3 个单位长度,再向左移动 7 个单位长度, 这时点所对应的数是( ). (A).3 (B).1 (C). -2 (D). -425 、如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相除所得的商 ( ). (A)一定为负数 (B)以上都不是 (C)等于 0 (D)一定为正数26、已知有理数 a 、b 在数轴上的位置如图所示,现比较 a 、b 、-a 、-b 的大小,则正确的是().(A).-a <-b <a <b(B).a <b <-b <-a(3) 23 - 6 ⨯ (-3) + 2 ⨯ (-4)(4) 1 ÷ ( - ) ⨯1(1)0-213 +(+34 )-(-3 )-(+4 ) (2) - 3 -50÷2 ×( (C).-b <a <-a <b(D).a <-b <b <-a27、若 a = -a ,则有理数 a 为()A 、正数B 、负数C 、非负数D 、负数和零28、设 a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于自身的有理数,a-b+c-d 的值为 ( ) A .1 B .3 C .1 或 3 D .2 或-129、 - x - ( y - z ) 去括号应为 ()A 、 - x + y - zB 、 - x - y + zC 、 - x - y - zD 、 - x + y + z30、数轴上表示整数的点称为整点,某数轴的单位长度为 1 ㎝,若在数轴上画出一条长 2004 ㎝的线段 AB ,则 AB 盖住的整点个数是()A .2002 或 2003B .2003 或 2004C .2004 或 2005D .无法确定三、解答题:(第 41 题 8 分,第 42 题 12 分,第 43、44 题均为 6 分,)41、计算:(每题 2 分,共 8 分) 1 1 1(1) - 3 + 8 - 7 - 15 (2) - ( - )2 4 66 3 1 1642、计算(每题 3 分,共 12 分)2 1 2 12 2 1 10)-1(3)—22×7—(—3)×6+5(4)-23+(-0.1)2÷(-1)-(-2)2⨯(-)114443、求值(6分)如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求(a-b)2010+(a+b)4的值44、化简(6分)如图,有理数x,y在数轴上的位置如图,试化简y-x-3y+1-x.四、应用题:(8分)已知水结成冰的温度是0C,酒精冻结的温度是–117℃。
人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -12B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________. 12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.三、解答题(一)(每题6分,共18分)18.计算:(1)-14-||1-0.5×13×[2-(-3)2];(2)(-34-56+712)÷124.19. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-52),-||-2.20. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B地在A地的何处?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度? (3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.参考答案1.D 2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11.12 022 12.-1 13.29 14.-5 15.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5×13×[2-9]=-1-0.5×13×(-7)=-1-16×(-7)=-1+76=16(2)原式=(-34-56+712)×24=-34×24-56×24+712×24=-18-20+14 =-2419.解:在数轴上表示各数如下:-(+6)<+⎝ ⎛⎭⎪⎫-52<-||-2<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8, ∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为: 4千米||4-9=5千米; ||4-9+8=3千米; ||4-9+8-7=4千米; ||4-9+8-7+13=9千米; ||4-9+8-7+13-6=3千米; ||4-9+8-7+13-6+10=13千米;||4-9+8-7+13-6+10-5=8千米.∴最远处离出发点13千米; (3)这一天走的总程为:4+||-9+8+||-7+13+||-6+10+||-5=62(千米), 应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克) 答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×⎝ ⎛⎭⎪⎫30 000-30 000×120=2.30×28 500=65 550(元). 答:本厂上月生产的洗衣粉销售的总金额为65 550元. 22.解:(1)(-3)×(-5)=15; (2)-5÷3=-53;(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=24 23.解:(1)它的第100个数是:-100 (2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022) =(-1)×2 022÷2 =-1 01124.解:(1)4-3-5+300=296(斤) 故答案为296. (2)21+8=29(斤) 故答案为29.(3)+4-3-5+14-8+21-6=17>0 故本周实际销售总量达到了计划销售量. (4)(17+100×7)×(8-3)=717×5 =3 585(元)答:小明本周一共收入3 585元. 25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)], 解得:x =-1所以点B 表示的数为-1,(2)7÷⎝ ⎛⎭⎪⎫2-14=4(秒) 4×⎝ ⎛⎭⎪⎫12-14-1=0 答:丙追上甲时,甲乙相距0个单位长度. (3)设P 点表示的数x ,依题意得||x +2+||x +1+||x -5=10,结合数轴得x =-83,2,∴P 点表示的数为-83或2.人教版七年级上册数学 第二章 整式的加减 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 单项式-2ab 4c23的系数与次数分别是( )A .-23,6B .-23,7C .23,6D .23,72. 下列各组数是同类项的是( )A .x 2y 和xy 2B .3ab 和-abcC .x 2和12D .0和-53. 下列计算正确的是( )A .7a +a =7a 2B .5y -3y =2C .3x 2y -2x 2y =x 2yD .3a +2b =5ab4. 某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%销售,则现在的单价是() A .(25%x +10)元 B .[(1-25%)x +10]元C .25%(x +10)元D .(1-25%)(x +10)元5. 整式x 2-3x 的值是4,则3x 2-9x +8的值是( )A .20B .4C .16D .-46. 化简a -[-2a -(a -b )]等于( )A .-2aB .2aC .4a -bD .2a -2b7. 如图,阴影部分的面积可表示为( )A .ab -r 2B .12ab -r 2C .12ab -πr 2D .ab8. 观察如图所示的图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-49. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A.4 B.5 C.6 D.710. 如图①是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图②),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a-b=b-c B.a+c+2=b+dC.a+b+14=c+d D.a+d=b+c二、填空题(每题4分,共28分)11. “比x的2倍大5的数”用式子表示是________.12. 若单项式x4y n与-2x m y3的和仍为单项式,则这个和为________.13. 一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下________.14. 某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费________元.15. 按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果为________.16. 如图所示的每幅图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是s 盆.按此规律推断,s 与n 之间的数量关系可以表示为s =________.17. 已知a ,b ,c 在数轴上的位置如图所示,化简:||a -b +||b +c +||c -a =________.三、解答题(一)(每题6分,共18分)18. 合并同类项4a 2-3b 2+2ab -4a 2-3b 2+5ba .19. 先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =2,y =-14.20. 先化简,再求值:3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2.四、解答题(二)(每题8分,共24分)21. 李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.22. 已知A =2a 2-a ,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.”乙旅行社说:“所有人按全票价的六折优惠.”已知全票为a 元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.五、解答题(三)(每题10分,共20分)24. 如下数表,是由从1开始的连续自然数组成的,观察规律完成下列各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36(1)表中第7行的最后一个数是________,它是自然数________的平方,第7行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)若将每行最中间的数取出,得到新的一列数1,3,7,13,21,31…,则第n个数与第(n-1)个数的差是多少?其中有两个相邻的数的差是24,那么这两个数分别在原数表的第几行?25. 某商场销某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款________________元(用含x 的式子表示),若该客户按方案二购买,需付款________________元(用含x 的式子表示);(2)当x =30时,通过计算说明此时按哪种方案购买较为合算;(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案1.B 2.D 3.C 4.D 5.A 6.C7.C 8.C 9.D 10.A11.2x +5 12.-x 4y 3 13.3a +2b14.1.2x -24 15.231 16.n (n +1)217.-2a18.解:4a 2-3b 2+2ab -4a 2-3b 2+5ba=-6b 2+7ab19.解:2(x 2y +xy )-3(x 2y -xy )-4x 2y=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy当x =2,y =-14时 原式=-5×22×(-14)+5×2×(-14) =5-52=5220.解:3m +4n -[2m +(5m -2n )-3n ]=3m +4n -(2m +5m -2n -3n )=3m +4n -7m +5n=-4m +9n ,把m =1n=2,n =0.5,代入代数式得 原式=-8+4.5=-3.521.解:(1)这套新房的面积为2x +x 2+4×3+2×3=x 2+2x +12+6=x 2+2x +18(m 2).(2)当x =6时,这套新房的面积是 x 2+2x +18=62+2×6+18=36+12+18=66(m 2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.22.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2-3a +10a -2+2=6a 2+7a ;(2)当a =-12时, 3A -2B +2=6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12 =-2,23.解:(1)由题意可得:甲:a +12ax ,乙:0.6a (x +1); (2)当x =30时,甲所需费用:16a 元;乙所需费用:0.6a (x +1)=18.6a 元因为18.6a >16a ,所以到甲旅行社更优惠.24.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得49,其他也随之解得:7,13;故答案为49;7;13.(2)由(1)知第n 行最后一数为n 2,则第一个数为n 2-2n +2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n -1;故答案为n 2-2n +2;n 2;2n -1.(3)第n 个和第(n -1)个数的差是2(n -1);2(n -1)=24 n -1=12n =13这两个数分别在原数表的第12行和第13行.25.解:(1)方案一:20×1 000+(x -20)×200=200x +16 000方案二:1 000×20×0.9+0.9×200x =180x +18 000故答案为200x +16 000;180x +18 000.(2)方案一:当x =30时,200x +16 000=200×30+16 000=22 000(元)方案二:当x =30时,180x +18 000=180×30+18 000=23 400(元),而22 000<23 400∴按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1 000+10×200×0.9=21 800(元),∵21 800<22 000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜.人教版七年级上册数学 第三章 一元一次方程 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是( ) A . m ≠0 B . m ≠1 C . m =-1 D . m =02. 下列方程的解是x =0的是( )A . 2x +3=x -3B . 3x =xC . x -9+4=5D . x +1=-13. 设x ,y ,c 是有理数,则下列结论正确的是( )A . 若x =y ,则x +c =y -cB . 若x =y ,则xc =ycC . 若x =y ,则x c =y cD . 若x 2c =y 3c,则2x =3y4. 方程x -x -53=1去分母,得( ) A . 3x -2x +10=1 B . x -(x -5)=3C . 3x -(x -5)=3D . 3x -2x +10=65. 如果x =-8是方程3x +8=-a 的解,则a 的值为( )A . -14B . 16C . 32D . -306. 下列两个方程的解相同的是( )A . 方程5x +3=6与方程2x =4B . 方程3x =x +1与方程2x =4x -1C . 方程x +12=0与方程x +12=0 D . 方程6x -3(5x -2)=5与6x -15x =37. 解方程4.5(x +0.7)=9x ,最简便的方法是首先( )A . 去括号B . 在方程两边同时乘10C . 移项D . 在方程两边同时除以4.58. 某车间有工人85人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,若有x 人生产大齿轮,则可列方程为( )A . 2×16x =3×10(85-x )B . 2×10x =3×16(85-x )C . 3×16x =2×10(85-x )D . 3×10x =2×10(85-x )9. 学校食堂提供两种午餐:已知12月份盈盈在学校共吃了22次午餐,每次吃一份,刚好把妈妈给的300元午餐费全部用完,则盈盈这个月的午餐吃自助餐( )A . 6次B . 10次C . 12次D . 16次10. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A . 亏损20元B . 盈利30元C . 亏损50元D . 不盈不亏二、填空题(每题4分,共28分)11. 若代数式3x +7的值为-2,则x =________.12. 若代数式x -5的值与2x -4的值互为相反数,则x =________. 13. 若-0.2a3x +4b 3与12ab y 是同类项,则xy =________.14. 在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了________场.15. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息,可知买5束鲜花和5个礼盒的总价为________元.16. 如图,是某年6月份的月历,用一个圈竖着圈3个数,若被圈住的三个数的和为39,则这三个数中最大的一个为________.17. 对于实数p 、q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {4x +12,1}=x,则x=________.三、解答题(一)(每题6分,共18分)18. 解方程x-3(1-2x)=11.19. 解方程x+53-x-32=1.20. 某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?四、解答题(二)(每题8分,共24分)21. 下面是马小哈同学做的一道题: 解方程:2x -13=1-x +24.解:①去分母,得4(2x -1)=1-3(x +2), ②去括号,得8x -4=1-3x -6, ③移项,得8x +3x =1-6+4, ④合并同类项,得11x =-1, ⑤系数化为1,得x =-111.(1)上面的解题过程中最早出现错误的步骤是________;(填代号) (2)请正确地解方程:x -x -12=2-x +24.22. 某学校举行排球赛,积分榜部分情况如下:(1)分析积分榜,平一场比负一场多得________分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积了14分,则七(6)班胜几场?23. 列方程解应用题:某人从家里骑自行车到学校,若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;从家里到学校的路程有多少千米?五、解答题(三)(每题10分,共20分)24. 某公园的门票价格规定如下表:某校七年级甲、乙两班共103人(其中甲班人数多于乙班人数,且甲班人数不超过100)去该公园游玩.如果两班都以班级为单位分别购票,那么一共需付486元.(1)如果两班联合起来作为一个团体购票,那么可以节约多少钱?(2)甲、乙两班各有多少人?25. 某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案) 参考答案1.B 2.B 3.B 4.C 5.B 6.B 7.D 8.C 9.D 10.A 11.-3 12.3 13.-3 14.11 15.440 16.20 17.-12或118.解:x -3(1-2x )=11x -3+6x =117x =14x =219.解:x +53-x -32=1方程两边同时乘6得, 6×x +53-6×x -32=62(x +5)-3(x -3)=6 2x +10-3x +9=6 -x =6-10-9=-13x =1320.解:设初一年级种植x 盆, 依题意得:x +(2x -3)+(2x -3+25)=909,解得x =178. ∴2x -3=353 2x -3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆. 21.解:(1)①. (2)去分母,得4x -2(x -1)=8-(x +2), 去括号,得4x -2x +2=8-x -2, 移项,得4x -2x +x =8-2-2, 合并同类项,得3x =4, 系数化为1,得x =43.22.解:(1)17-16=1;故答案为1. (2)设负1场得x 分. 根据题意得:3×5+x =16. 解得:x =1.∴负1场得1分,平一场得2分. 设七(6)胜y 场,则平2y 场,负6-3y 场. 根据题意得:3y +2×2y +6-3y =14.解得:y =2答:七(6)班胜2场.23.解:设从家到学校有x 千米,15分钟=14小时,依题意得:x 15+14=x 9-14,12x +45=20x -45, 8x =90x =11.25,答:从家里到学校的路程有11.25千米. 24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)答:如果两班联合起来,作为一个团体购票,则可以节约74元钱. (2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班一定大于50人.,又甲班人数不超过100人,则甲班票价按每人4.5元计算.下面就乙班人数分析:①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x )人,依题意,得 5x +4.5(103-x )=486 解得x =45, ∴103-45=58(人)即甲班有58人,乙班有45人. ②若乙班此时也大于50人,而 103×4.5=463.5<486.应舍去. 答:甲班有58人,乙班有45人. 25.解:(1)120×0.95=114 (元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元. (2)设购买商品的价格是x 元, 根据题意,得0.8x +168=0.95x , 解得x =1 120,所以所购买商品的价格是1 120元时,两种方案的优惠情况相同. (3)当不购买会员卡,实际应支付的钱数=购买会员卡应支付的钱数时,则0.8x+168=0.95x,解得:x=1 120,当不购买会员卡,实际应支付的钱数>购买会员卡应支付的钱数时,则0.8x+168>0.95x解得:x<1 120 ,当不购买会员卡,实际应支付的钱数<购买会员卡应支付的钱数时,则0.8x+168<0.95x,解得:x>1 120.所以当购买商品的价格等于1 120元时,两种方案同样合算,当购买商品的价格在1 120元以上时,采用方案一更合算,当购买商品的价格在1 120元以下时,采用方案二合算.。
七年级上册数学第一章有理数单元检测001一、填空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____.9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是…………………………………………………( )A 、5B 、–5C 、51D 、51-12、在–2,+3.5,0,32-,–0.7,11中.负分数有………………( )A 、l 个B 、2个C 、3个D 、4个13、下列算式中,积为负数的是……………………………( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是……………………………( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169D 、2)4(-与–16 15、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………( )A 、121 B 、321 C 、641 D 、1281 17、不超过3)23(-的最大整数是……………………………( ) A 、–4 B –3 C 、3 D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小.(1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是 0C ,酒精冻结的温度是–117℃。
七年级数学上册第1-3章复习检测题(含答案)试卷,初二七年级答案,习题,模拟试卷(时间90分钟满分100分)班级姓名得分一、填空题(每题2分,共32分)1.-2的倒数是.2.4的平方根是.3.-27的立方根是4.32的相反数地,绝对值是.5.比较大小:-11.326.用计算器计算:(结果保留4个有效数字):31400=,0.618=,-30.0005432=.7.写出两个无理数,使它们的和为有理数;写出两个无理数,使它们的积为有理数.8.2007年我国外汇储备4275.34亿美元,结果保留三个有效数字,用科学记数法表示为亿美元.9.一个正数的算术平方根与立方根是同一个数,则这个数是.10.在数轴上,到原点距离为125个单位的点表示的数是11.不小于45的最小整数是.12.若n为自然数,那么(1)2n1222n1=.13.若实数a、b满足a2(b)0,则ab=.14.小红做了棱长为5cm的一个正方体盒子,小明说:“我做的盒子的体积比你的大218cm.”则小明的盒子的棱长为cm.15.a和b之间,a<3<b,那么a,b的值分别是16.罗马数字共有7个:I(表示1),V(表示5),某(表示10),L(表示50),C(表示100),D(表示500),M(表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如I某=10-1=9,VI=5+1=6,CD=500-100=400,则某L=某I=试卷,初二七年级答案,习题,模拟试卷二、解答题(每题2分,共32分)17.(8分)(1)判断下列各式是否正确.你认为成立的,请在括号内打“√”,不成立的打“某”.①234152322()②338524338()③44415()④55524()(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:.18.(5分)在数轴上表示下列各数:2的相反数,绝对值是19.(8分)计算(1)-2(3)(-120.(5分)已知:某是|-3|的相反数,y是-2的绝对值,求2某2-y2的值.213)某32+23;(4)π+.(精确到0.01)32377311÷(-5)某;(2)(1--)÷(-1);481242511的数,-1的倒数.42试卷,初二七年级答案,习题,模拟试卷21.(5分)4-3的整数部分为a,小数部分为b,求ba3的值.(保留3个有效数字)22.(5分)利用4某4方格,作出面积为10平方厘米的正方形,然后在数轴上表示实数与-.23.(5分)一本书长是宽的1.6倍,面积为274平方厘米,则这本书的宽大约是多少?(精确到0.1cm)24.(5分)一个圆柱的体积是10cm3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径是多少?(保留2个有效数字)25.(5分)已知长方形的长与宽为比3:2,面积为36cm2,求长方形的长与宽.(结果保留根号)试卷,初二七年级答案,习题,模拟试卷26.(5分)把一个长方形的长和宽分别扩大相同的倍数,使面积扩大40倍,求长和宽分别扩大的倍数.(结果保留根号)27.(5分)座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2其中T表示周期(单位:秒)l表示摆长(单位:米)g=9.8米/秒2,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?28.(7分)在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.(结果精确到0.1)试卷,初二七年级答案,习题,模拟试卷一、填空题1.122.23.34.2325.<6.37.42,±0.7861,0.081597.23110.11.1012.013.18.4.28109.14.715.3,416.40,11二、解答题17.(1)4个全对;(2218.略19.(1)110;(2)16;(3)58;(4)4.2120.1421.122.略23.13.1cm24.1.17cm25.,26.27.约42次28.表格中依次填,积为200.8。
1.1从自然数到有理数(第1课时)1.自然数是人类历史上最早出现的数.自然数在____________和____________中有着广泛的应用,人们还常常用自然数来给事物____________或____________.2.在小学阶段,小数(π除外)都可以转化为____________,而分数也都可以转化为____________.3.分数在化成小数时,结果可能是____________,也可能是____________.A组基础训练1.2017年2月10日,浙江省某地今明天气预报:”今天:晴转多云,偏北风2~3级,2℃~6℃;明天:多云转晴,0℃~5℃”,其中2月10日,2~3级,0℃~5℃分别属于() A.排序、测量、测量B.排序、测量、计数C.排序、计数、测量D.计数、测量、排序2.生产同样的产品,小王三分钟可生产五个,小李五分钟可生产三个.则下列说法正确的是()A.小王的工作效率高B.小李的工作效率高C.两人的工作效率一样高D.无法比较两人的工作效率3.四个同学每两个人握一次手,一共握手()A.8次B.4次C.6次D.10次4.拃是拇指和食指在平面上伸直时,两者端点之间的距离,则以下估计正确的是()第4题图A.课本的宽度约为4拃B.课桌的宽度约为4拃C.黑板的宽度约为4拃D.字典的厚度约为4拃5.纸店有三种纸,甲种纸4角买11张,乙种纸5角买13张,丙种纸7角买17张,则三种纸中最贵的是()A.甲种B.乙种C.丙种D.三种一样贵6.(厦门中考)如图所示的6个数是按一定规律排列的,根据这个规律,括号内的数是()1627 432940()第6题图A.27 B.56 C.43 D.307.如图,将一张正方形纸片分割成四张面积相等的小正方形纸片,然后将其中一张小正方形纸片再分割成四张面积相等的小正方形纸片.如此分割下去,第10次分割后,正方形纸片共有()第7题图A.31张B.32张C.33张D.34张8.小亮在看报纸时,收集到以下信息:(1)某地的国民生产总值列全国第五位;(2)某城市有16条公共汽车线路;(3)小刚乘T32次火车去北京;(4)小风在校运会上获得跳远比赛第一名.你认为其中用到自然数排序的有____________.9.计算3.69÷6.15,结果用分数表示是____________,用小数表示是____________.10.如图是某宾馆的台阶侧面示意图,若要在台阶上铺地毯,那么至少要买长为____________米的地毯.第10题图11.瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的两个数据分别是____________.12.林林手中有22元钱,买文具用了2元5角,买水果用了3元,在回家路上遇到爷爷,爷爷给了他15元钱,现在他手中共有多少钱?B 组 自主提高13.小慧同学不但会学习,而且也很会安排时间干家务活,煲饭、炒菜、擦窗等样样都行,是爸妈的好帮手.某一天放学回家后,她完成各项家务活及所需时间如下表:小慧同学完成以上各项家务活,至少需要____________分钟(各项家务活转接时间忽略不计).14.一本书有200页,小英计划三天看完,第一天看了全书的40%,第二天与第三天看的页数之比是5∶7.(1)题中200是用于表示计数还是测量的?(2)第二天、第三天分别看了第一天看完后剩下的页数的几分之几?你能求出第二天、第三天各看了多少页吗?15.”假日旅行社”推出”西湖风景区一日游”的两种出游价格方案,如图:方案一成人每人150元,儿童每人60元.方案二团体5人及以上,每人100元.第15题图(1)成人10人,儿童5人.怎样购票合算?(2)成人5人,儿童10人.怎样购票合算?C组综合运用16.一个纸环链,纸环按红、黄、绿、蓝、紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()第16题图A.2018 B.2017 C.2016 D.201517.古希腊人常用小石子在沙滩上摆成各种形状来研究数的规律.例如:第17题图由图1中的小石子围成三角形,其颗数3,6,10,…称为三角形数.类似地,称图2中的4,9,16,…这样的数为正方形数.下列数中,既是三角形数又是正方形数的是()A.15 B.25 C.55 D.1225参考答案1.1 从自然数到有理数(第1课时)【课堂笔记】1.计数 测量 标号 排序 2.分数 小数 3.有限小数 无限循环小数 【分层训练】1.A 2.A 3.C 4.B 5.C 6.B 7.A 8.(1)(3)(4) 9.35 0.6 10.6.511.4945,6460 12.31.5元 13.33 14.(1)题中200是用于表示计数的. (2)5+7=12,故第二天看了第一天看完后剩下的页数的512,第三天看了第一天看完后剩下的页数的712.200×(1-40%)=120(页),120×512=50(页),120×712=70(页).∴第二天看了50页,第三天看了70页.15.(1)10个成人买团体票,5个儿童购买儿童票合算. (2)5个成人买团体票,10个儿童购买儿童票合算.16.A 【解析】一个基础纸环链共5个环,左边配上蓝、紫可形成一个基础纸环链,右边配上红即可,中间少了n 个基础纸环链.故截去部分纸环个数必为5n +3,所以选A .17.D 【解析】三角形数的规律s 1=1+2+…+n =n (n +1)2,正方形数的规律s 2=n 2,故既是三角形数又是正方形数的数必是某一个数的平方,并且是相邻两个自然数乘积的一半,故选D .1.1 从自然数到有理数(第2课时)1.大于零的数叫做____________,小于零的数叫做____________. 2.零既不是____________,也不是____________. 3.有理数的分类:分类一:有理数⎩⎪⎨⎪⎧整数⎩⎨⎧⎭⎪⎬⎪⎫正整数零自然数负整数分数⎩⎪⎨⎪⎧正分数负分数分类二:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数A 组 基础训练1.下列各组中,互为相反意义的量是( ) A .上升和下降B .篮球比赛胜5场与负3场C .向东走3千米,再向东走2千米D .增产10吨粮食与减产-10吨粮食2.如果水位升高3m 时,水位变化记做+3m ,那么水位下降3m 时,水位的变化记做( )A .-3mB .3mC .6mD .-6m3.某天中午的气温为零上2℃,晚上的气温下降了3℃,则这天晚上的气温为( ) A .3℃ B .1℃ C .-3℃ D .-1℃4.给出下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有( )A .3个B .4个C .5个D .6个 5.下列说法正确的是( ) A .整数就是正整数和负整数 B .分数包括正分数、负分数C .正有理数和负有理数组成全体有理数D .一个数不是正数就是负数6.-1,0,0.2,17,3中,正数一共有____________个.7.在下列横线上填上恰当的词,使前后构成意义相反的量. (1)收入2000元,____________1800元; (2)____________180m ,下降80m ; (3)向北1000m ,____________500m.8.(1)小张向东走了200m 记为+200m ,然后他向西走了-300m ,这时小张的位置与最初的位置比较是在____________.(2)2017年第二季度某商城的交易总额比第一季度增长7.5%,记做+7.5%,第三季度比第二季度下降1.2%,可记做____________.(3)在一次数学测验中,某班同学的平均分为85分,如果明明得94分,记做+9分,那么婷婷得80分,记做____________分.(4)已知一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),那么内径尺寸为29.89毫米的零件属于____________产品(填”合格”或”不合格”).(5)在时钟上,把时针从钟面数字”12”按顺时针方向拨到”6”,记做拨+12周,那么把时针从”12”开始,拨-14周后,该时针所指的钟面数字是____________.9.把下列各数填入相应的大括号里:-3.14,4.3,+72,0,13,-6,-7.3,-12,0.4,-56,227,26.(1)正数集:{____________…} (2)负数集:{____________…} (3)正整数集:{____________…} (4)负整数集:{____________…} (5)非负数集:{____________…}10.某水库的标准水位记做0m ,如果用正数表示水面高于标准水位的高度,那么: (1)0.08m 和-1.25m 分别代表什么?(2)水面高于标准水位2.26m 和水面低于标准水位1.44m 分别如何表示?11.如图所示,欢欢、花花、芳芳三家在同一栋楼里,若以花花家的位置为基准,记为0米,规定高出为正,请问:其他两家的位置分别应为多少米?第11题图B组自主提高12.观察下面一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成下列形式:…按照上述规律排下去,那么第10行从左边数第9个数是____________;数-201是第____________行从左边数第____________个数.13.体育课上,老师对七年级男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示.其中8名男生的成绩如下:3,-1,0,-3,-2,-1,2,0.问:这8名男生有百分之几达到标准?14.仔细观察下列数的规律后回答问题:-1,+2,-3,+4,-5,+6,…(1)数2016前面的符号是”+”还是”-”?(2)第2016个数可表示成什么?C组综合运用15.室内有4盏电灯在照明,每盏电灯都有且只有一个开关控制,现请你每次只拉动其中3盏电灯的开关,问:能否拉动有限次将这4盏灯关闭?如果不能,请说明理由;如果能,请写出最少的次数.参考答案1.1 从自然数到有理数(第2课时)【课堂笔记】1.正数 负数 2.正数 负数 【分层训练】1.B 2.A 3.D 4.C 5.B 6.3 7.(1)支出 (2)上升 (3)向南8.(1)原位置的东面500m 处 (2)-1.2% 【解析】由题意可知增长记为正,则下降记为负. (3)-5 (4)不合格 (5)9 【解析】∵顺时针方向记为正,∴负表示逆时针方向.∴拨-14周后,该时针所指的钟面数字是9.9.(1)4.3,+72,13,0.4,227,26 (2)-3.14,-6,-7.3,-12,-56(3)+72,26 (4)-6,-12 (5)4.3,+72,0,13,0.4,227,2610.(1)水面高于标准水位0.08m ,水面低于标准水位1.25m . (2)+2.26m ,-1.44m . 11.欢欢家:-4米,芳芳家:+12米.12.90 15 5 【解析】根据题意得:每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号.如第4行最末的数字是42,第9行最后的数字是-92.∴第10行从左边数第9个数是81+9=90.∵-201=-1×(142+5),∴是第15行从左边数第5个数.13.因为8名男生中有4人达到标准,所以达到标准的百分率为48×100%=50%.14.(1)“+” (2)+201615.能,至少四次,下面是一种可能(其中“+”表示打开,“-”表示关闭):1.2 数轴1.规定了____________、____________和____________的直线叫做数轴.2.如果两个数只有____________不同,那么我们称其中一个数为另一个数的____________,也称这两个数互为相反数.特别地,零的相反数为____________.3.在数轴上,表示互为____________(零除外)的两个点,位于____________的两侧,并且到____________的距离____________.A 组 基础训练1.(宜宾中考)-15的相反数是( )A .5 B.15 C .-15 D .-52.下列各图中,表示的数轴正确的是( )3.下列数1,4,0,-12,-3在数轴上表示的点中不在原点右边的点的个数为( )A .2B .3C .4D .54.如图,数轴的单位长度为1,如果点A ,B 表示的数互为相反数,那么点A 表示的数是( )第4题图A .-4B .-2C .0D .4 5.数轴上的动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数为( )A .7B .3C .-3D .-2 6.有下列说法:①0的相反数是0;②a 的相反数不是正数就是负数;③若a ,b 互为相反数,则a b =-1;④若ab =-1,则a ,b 互为相反数;⑤若a ,b 互为相反数,则a +b =0;⑥若a +b =0,则a ,b 互为相反数.其中正确的有____________.7.(1)如果一个数的相反数是它本身,那么这个数是____________;a 的相反数是____________;若2x +3与x -6互为相反数,则x =____________.(2)数轴上表示-13的点在表示-1的点的____________;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是____________;数轴上点Q 距原点3.5个单位长度,且在原点的右侧,那么点Q 表示的数是____________.(3)若x 表示到原点距离最小的点所对应的数,则x =____________;在数轴上距原点512个单位长度的点有____________个,它们表示的数是____________,它们互为____________.(4)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是____________.第7题图8.(1)点A 在数轴上所表示的数是m ,将点A 向右移动7个单位后所表示的数是3,则m =____________.(2)已知数轴上的点A 表示+7,B ,C 两点所表示的数互为相反数,且点C 与点A 的距离为2个单位长度,则点B 和点C 表示的数分别是____________.9.(1)如图,写出数轴上的点A ,B ,C ,D ,E 所表示的数.第9题图(2)写出下列各数的相反数,并将这些数与它们的相反数在数轴上表示出来. 3,-112,0,12,-210.小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中数据,你能确定墨迹盖住的整数是哪几个吗?第10题图B组自主提高11.七年级(3)班在一次联合活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)把每个队的得分标在数轴上,并将代表该队的字母标上(一个单位为50分);(2)从数轴上看A队与B队相差多少分?C队与E队相差多少分?12.有理数a,b在数轴上的位置如图所示.第12题图(1)在数轴上分别用A、B两点表示-a,-b;(2)若数b与-b表示的点相距20个单位长度,则b与-b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a 与-a表示的数是多少?13.如图,图中数轴的单位长度为1.第13题图(1)如果点B,E表示的两个数互为相反数,那么点A,B,C,D,E所表示的数分别是多少?(2)如果点C,E表示的两个数互为相反数,那么点A,B,C,D,E所表示的数分别是多少?C组综合运用14.已知在纸面上有一数轴如图,折叠纸面.第14题图(1)若1表示的点与-1表示的点重合,则-3表示的点与数____________表示的点重合;(2)若5表示的点与-1表示的点重合,回答以下问题:①数3表示的点与数____________表示的点重合;②若数轴上A,B两点之间的距离为9(点A在点B左侧),且A,B两点经折叠后重合,求A,B两点所表示的数.参考答案 1.2 数轴【课堂笔记】1.原点 单位长度 正方向 2.符号 相反数 零 3.相反数 原点 原点 相等 【分层训练】1.B 2.C 3.B 4.B 5.D 6.①④⑤⑥7.(1)0 -a 1 (2)右边 -5 +3.5 (3)0 2 +512,-512 相反数 (4)28.(1)-4 (2)-5,5或-9,99.(1)A 表示0,B 表示-212,C 表示-1,D 表示212,E 表示4. (2)它们的相反数分别为-3,112,0,-12,2,画图略.10.-5,-4,-3,-2,1,2,3.11.(1)画数轴略; (2)A 队与B 队相差200分,C 队与E 队相差400分. 12.(1)如图:第12题图(2)数b 与其相反数相距20个单位长度,则b 表示的点到原点的距离为20÷2=10,所以b 表示的数是-10,-b 表示的数是10; (3)因为-b 表示的点到原点的距离为10,而数a 表示的点与数b 的相反数表示的点相距5个单位长度,所以a 表示的点到原点的距离为10-5=5,所以a 表示的数是5,-a 表示的数是-5.13.(1)由图可知:点B ,E 之间相距8个单位长度,又因为它们互为相反数,所以线段BE 的中点是原点.而点D 恰好距点B ,E 各4个单位长度,故点D 表示的数为0.所以点A 表示的数为-6,点B 表示的数为-4,点C 表示的数为-2,点E 表示的数为+4. (2)由图可知:点C ,E 之间相距6个单位长度,因此点C 表示的数为-3,点E 表示的数为+3.所以点A 表示的数为-7,点B 表示的数为-5,点D 表示的数为-1.14.(1)3 (2)①1 ②点A 表示-2.5,点B 表示6.5.1.3 绝对值1.把一个数在数轴上对应的点到____________的____________叫做这个数的____________.2.一般地,一个正数的绝对值是它____________;一个负数的绝对值是它的____________;零的绝对值是____________.互为相反数的两个数的绝对值____________,即任何数的绝对值是____________.3.绝对值等于本身的数是____________.A组基础训练1.(绍兴中考)-2的绝对值是()A.2 B.-2 C.0 D.1 22.有理数中,绝对值最小的数是()A.-1 B.0 C.1 D.没有3.有四包真空小包装火腿,每包以标准克数(450g)为基准,超过的克数记做正数,不足的克数记做负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是() A.+2 B.-3 C.+3 D.+44.下列说法正确的是()A.任何有理数的绝对值一定是正数B.互为相反数的两个数的绝对值也互为相反数C.绝对值相等的两个数一定相等D.绝对值等于它本身的数是非负数5.(1)若|x|=-x,则x满足的条件是()A.x>0 B.x=0 C.x<0 D.x≤0(2)若|x|=|y|,则x与y之间的关系是()A.相等B.互为相反数C.相等或互为相反数D.无法判断6.下列说法:①绝对值是它本身的数有两个:0和1;②一个有理数的绝对值必为正数;③0.5的倒数的相反数的绝对值是2;④任何有理数的绝对值都不是负数.其中错误的个数是____________个.7.(1)-212的绝对值是____________;绝对值等于12的数是____________,它们是一对____________.(2)如图,图中数轴的单位长度为1,如果点B ,C 所表示的数的绝对值相等,那么点A 表示的数是____________.第7题图(3)若数轴上表示数a 的点位于-3和2之间,则|a +3|+|a -2|的值是____________. 8.有甲、乙两只蚂蚁分别在数轴上的A ,B 两点处,A ,B 两点表示的数分别为1和-1110,它们同时发现原点处有一食物,于是以相同的速度爬过去,先得到食物的是____________蚂蚁.(填”甲”或”乙”)9.计算: (1)|-10|+|8|;(2)|-6.25|×|-4|;(3)⎪⎪⎪⎪-345-⎪⎪⎪⎪-45+⎪⎪⎪⎪-312.10.正式排球比赛对所用排球的质量有严格的规定,允许有0.02kg 的误差,下面是6个排球的质量检测结果(用正数记超过规定质量的千克数,用负数记不足规定质量的千克数):(单位:kg)(1)请你指出几号排球合乎要求;(2)请你对6个排球按照质量最好到最差排名;(3)用学过的绝对值知识来说明以上问题.B组自主提高11.(1)若|a|=2,|b|=5,a与b同号,则|a+b|=____________;已知|x|=3,则x=____________;已知|-x|=2,则x=____________;已知|a|=4,那么a-1=____________.(2)已知|x-3|=0,则x=____________;已知|x-3|=2,则x=____________.(3)已知|a|=3,|b|=5,则a,b两数在数轴上所表示的点之间的距离是____________.12.一辆货车从货场A出发,向东行驶了2km到达批发部B,继续向东行驶了1.5km 到达商场C,又向西行驶了5.5km到达超市D,最后回到货场.(1)用一个单位长度表示1km,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?C 组 综合运用13.(1)计算下列各式,将结果直接写在横线上:⎪⎪⎪⎪12-1=____________,1-12=____________; ⎪⎪⎪⎪15-13=____________,13-15=____________; ⎪⎪⎪⎪34-45=____________,45-34=____________. 将(1)中每行计算结果进行比较,利用你发现的规律计算(2)(3)题. (2)计算:|3.14-π|=____________;(3)计算:⎪⎪⎪⎪12017-12016+⎪⎪⎪⎪12016-12015+⎪⎪⎪⎪12015-12014+…+⎪⎪⎪⎪13-12+⎪⎪⎪⎪12-1.参考答案 1.3 绝对值【课堂笔记】1.原点 距离 绝对值 2.本身 相反数 零 相等 非负数(正数和0) 3.非负数(正数和0)【分层训练】1.A 2.B 3.A 4.D 5.(1)D (2)C6.2 7.(1)212 ±12 相反数 (2)-5 (3)5 8.甲 9.(1)18 (2)25 (3)61210.(1)2号和6号(2)从好到差为6号,2号,4号,5号,3号,1号.(3)|-0.011|<|-0.017|<|-0.021|<|+0.022|<|+0.023|<|+0.031|. 11.(1)7 ±3 ±2 3或-5 (2)3 1或5 (3)2或8 12.(1)如图.第12题图(2)由数轴可知超市D 距货场A 有2km . (3)货车一共行驶了2+1.5+5.5+2=11(km ). 13.(1)12 12 215 215 120 120(2)π-3.14 (3)20162017专题提升一 数轴、相反数、绝对值 等的综合运用 1.C 2.A3.(1)由题意得,x -2=0,y +3=0,解得x =2,y =-3; (2)|x|+|y|=|2|+|-3|=2+3=5.4.(1)如图所示:第4题图(2)-x <y <0<︱y ︱<x(3)根据题意和图示分析可知:x +y >0,y -x <0,y <0,所以|x +y|-|y -x|+|y|=x +y -x +y -y =y.5.D 6.-4 -3 37.(1)点S 表示0,点P 表示-4,点T 表示4. (2)点S 表示5,4,1,3,0或-1. 8.D 9.-9798>-9899>-9910010.(1)点A 表示-1,点B 表示2,点C 表示-3,点D 表示4. (2)4>2>-1>-3. 11.C 12.4 13.第44行,左起第9个数.1.4 有理数的大小比较1.在数轴上表示的数,正数位于原点的____________,负数位于原点的____________. 2.在数轴上表示的两个数,右边的数总比左边的数____________.3.正数都____________零,负数都____________零,正数____________负数. 4.两个正数比较大小,绝对值大的数____________,两个负数比较大小,绝对值大的数____________.A 组 基础训练1.下表是四个城市二月份某一天的平均气温:其中平均气温最低的城市是( )A .阿勒泰B .喀什C .吐鲁番D .乌鲁木齐 2.大于-5的负整数的个数是( )A .3B .4C .5D .6 3.下列说法正确的是( ) A .有最大的负数,没有最小的正数 B .有最小的负数,没有最大的正数 C .没有最大的有理数和最小的有理数D .有最小的负整数和最大的正整数4.-34,-56,-78这三个数的大小关系是( )A .-78<-56<-34B .-78<-34<-56C .-56<-78<-34D .-34<-56<-785.比较大小:(1)0____________-2.5; (2)-π____________-3.14; (3)|+2.1|____________|-2.1|; (4)⎪⎪⎪⎪+18____________⎪⎪⎪⎪-17; (5)-⎝⎛⎭⎫+57____________-⎪⎪⎪⎪-67; (6)-|-2|____________-(-2).6.已知一组数:4,-3,-12,5.1,-412,0,-2.2.在这组数中:(1)绝对值最大的数是____________,绝对值最小的数是____________; (2)相反数最大的数是____________,相反数最小的数是____________. 7.(1)在数1,0,-1,-2中,最小的数是____________. (2)写出三个大于-2.5的负有理数:____________.(3)最大的负整数是____________,绝对值最小的数是____________,绝对值最小的正整数是____________.(4)大于-2的最小整数为____________,小于-3.56的最大整数为____________. (5)写出绝对值不大于3的整数:____________. (6)大于-3.5且小于2.5的整数共有____________个.8.(1)已知a ,b 都是有理数,在数轴上的位置如图所示,则a ,-b ,|a|,|b|的大小关系是____________.第8题图(2)若a<b<0,将1,1-a ,1-b 这三个数按从小到大的顺序用”<”连接起来是____________.(3)若a 是小于1的正数,用”<”将-a ,-1a ,1a ,0,-1,1连接起来是____________.9.比较下列各组数的大小,并说明理由. (1)2与-10;(2)-0.003与0;(3)-12与14.10.在数轴上标出下列各数,并用”<”把各数连接起来:-4,2,-(+12),-1.5,112,⎪⎪⎪⎪-12.11.有5袋小麦,以每袋25千克为基准,超过的千克数记做正数,不足的千克数记做负数,各袋大米的千克数如下表:(1)第一袋大米的实际质量是多少千克? (2)把表中各数用”<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?B组自主提高12.(1)a,b两数在一条隐去原点的数轴上的位置如图所示(表示数a的点与表示数-1的点的距离大于表示数b的点与表示数-1的点的距离).第12题图有下列式子:①a-b<0;②a+b<0;③ab<0;④(a+1)(b+1)<0.其中一定成立的是____________(填序号).(2)若a<0,b<0,|a|<|b|,则a与b的大小关系是____________.13.若用点A,B,C分别表示有理数a,b,c,它们在数轴上的位置如图所示.第13题图(1)比较a,b,c的大小;(2)化简:2c+|a+b|+|c-b|-|c-a|.14.如图,图中数轴的单位长度是1,请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点D表示的数是多少?(2)如果点B,E表示的数的绝对值相等,那么点A表示的数是多少?图中表示的5个点中,哪一个点表示的数的绝对值最小?最小的绝对值是多少?第14题图C组综合运用15.已知a<6,试比较|a|与3的大小.参考答案1.4 有理数的大小比较【课堂笔记】1.右侧 左侧 2.大 3.大于 小于 大于 4.大 反而小 【分层训练】 1.A 2.B 3.C 4.A5.(1)> (2)< (3)= (4)< (5)> (6)< 6.(1)5.1 0 (2)-4125.17.(1)-2 (2)-2,-1.5,-1(答案不唯一) (3)-1 0 1 (4)-1 -4 (5)±3,±2,±1,0 (6)68.(1)a<-b<|b|<|a| (2)1<1-b<1-a (3)-1a <-1<-a <0<1<1a9.(1)2>-10,理由略. (2)-0.003<0,理由略. (3)-12<14,理由略.10.图略-4<-1.5<-(+12)<⎪⎪⎪⎪-12<112<2 11.(1)24.8千克 (2)-0.3<-0.2<-0.1<0.1<0.2 (3)三<一<四<二<五 与(2)中一致12.(1)①②④ (2)a >b 13.(1)由数轴可知:a<c<b.(2)由数轴可知:b>0,a<c<0,且a +b<0,c -b<0,c -a>0,∴原式=2c -(a +b)-(c -b)-(c -a)=2c -a -b -c +b -c +a =0.14.(1)-6 (2)-2,点C ,最小绝对值为0. 15.利用数轴,如图.第15题图当3<a<6时,|a|>3;当a =3时,|a|=3;当-3<a<3时,|a|<3;当a =-3时,|a|=3;当a<-3时,|a|>3.综上所述:当3<a<6或a<-3时,|a|>3;当a =±3时,|a|=3;当-3<a<3时,|a|<3.2.1 有理数的加法(第1课时)1.同号两数相加,取与____________相同的符号,并把____________相加. 2.异号两数相加,取绝对值____________的加数的符号,并用较大的绝对值____________较小的绝对值.3.互为相反数的两个数相加得____________;一个数同零相加,仍得____________.A 组 基础训练1.计算-2+1的结果是( )A .1B .-1C .3D .-3 2.两个有理数的和等于零,则这两个有理数( )A .都是零B .一正一负C .有一个加数是零D .互为相反数 3.下列运算中,正确的个数有( )①(-5)+5=0 ②(-10)+(+7)=-3 ③3+(-4)=-7 ④(-3)+2=-1 ⑤(-1)+(+2)=-1A .1B .2C .3D .4 4.一个数是-4,另一个数比它大2,则另一个数是( )A .-2B .-6C .2D .6 5.如果两个数的和是负数,那么( ) A .这两个加数都是负数B .一个加数为负,另一个加数为0C .两个加数异号,且负数的绝对值大D .必属于以上三种情况之一 6.计算:(1)(-4)+(+2)=____________; (2)(-12)+(-13)=____________;(3)123+(-1013)=____________.7.比较下列各式的大小,用”>”、”<”或”=”连接.(-8)+(+8)____________0;(-8)+(-8)____________0;⎝⎛⎭⎫-25+⎝⎛⎭⎫+52____________0;0+(-4)____________0. 8.-113的相反数与-34的和是____________.9.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为____________℃.10.数轴上有一只蚂蚁,从原点出发,先向右爬行5个单位,再向左爬行12个单位,最后这只蚂蚁在数轴上所在的位置表示的数是多少?并用算式表示出来.11.计算: (1)(-98)+85; (2)(-212)+(-113);(3)⎝⎛⎭⎫-227+⎝⎛⎭⎫-349; (4)(+51)+⎝⎛⎫-2757.12.列式计算:(1)比-8大3的数是多少?(2)一个数是6,另一个数比6的相反数大2,求这两个数的和是多少?(3)某地气温不稳定,开始是6℃,2小时后升高4℃,再过2小时又下降11℃,求此时该地的气温是多少?13.已知a,b,c的位置如图,化简|a-b|+|b+c|+|c-a|.第13题图B组自主提高14.下列说法正确的是()A.两个正数相加,和为正数B.两个负数相加,绝对值相减C.两个数相加,等于它们的绝对值相加D.正数加负数,其和一定等于015.(1)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b +|c|等于____________;(2)已知|x-4|与|y+5|互为相反数,则x+y的值是____________;(3)已知a,b,c三个数在数轴上的位置如图所示,则下列结论:①a+b<0;②b+c<0;③a+b+c>0;④a+c>0.正确的是____________.第15题图16.计算:(+1)+(-12)=____________;(+12)+(-13)=____________; (+13)+(-14)=____________; (+14)+(-15)=____________. 由此规律,请你完成下面计算: 12+16+112+120+130+142+156+172+190.C 组 综合运用17.(1)已知|a|=3,|b|=2,求a +b 的值. (2)已知|a|=4,|b|=2,且a>b ,求a +b 的值.参考答案2.1 有理数的加法(第1课时)【课堂笔记】1.加数 绝对值 2.较大 减去 3.零 这个数 【分层训练】1.B 2.D 3.C 4.A 5.D 6.(1)-2 (2)-56 (3)-8237.= < > < 8.7129.-1 10.-7 0+(+5)+(-12)=-7 11.(1)原式=-(98-85)=-13. (2)原式=-(212+113)=-(236+126)=-356.(3)原式=-⎝⎛⎭⎫227+349=-⎝⎛⎭⎫21863+32863=-54663. (4)原式=+⎝⎛⎭⎫51-2757=2327. 12.(1)-8+3=-5. (2)-6+2=-4,6+(-4)=2. (3)6+4+(-11)=-1(℃). 13.由数轴可知a<c<0<b ,|c|>|b|,∴a -b<0,b +c<0,c -a>0,则|a -b|+|b +c|+|c -a|=-(a -b)+(-b -c)+(c -a)=-2a.14.A 15.(1)0 (2)-1 (3)①②④ 16.12 16 112 120原式=(+1)+(-12)+(+12)+(-13)+(+13)+(-14)+…+(+19)+(-110)=(+1)+(-110)=910. 17.(1)∵|a|=3,|b|=2.∴a =±3,b =±2. ①当a =3,b =2时,a +b =3+2=5; ②当a =3,b =-2时,a +b =3-2=1; ③当a =-3,b =2时,a +b =-3+2=-1; ④当a =-3,b =-2时,a +b =-3-2=-5.(2)∵|a|=4,|b|=2,∴a =±4,b =±2,又∵a>b ,∴a =4.∴a +b =6或2.2.2 有理数的减法(第1课时)1.减去一个数,等于加上这个数的____________. 2.零减去一个有理数,得到这个数的相反数.3.有理数的减法运算是把减法变为加法,减数变为它的相反数.A 组 基础训练1.(绍兴中考)冬天的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( ) A .4℃ B .6℃ C .10℃ D .16℃2.下列算式:①0-(314)=314;②0-(-314)=314;③(+18)-0=-18;④(-3)-(-2)=-1.其中正确的有( )A .1个B .2个C .3个D .4个 3.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-⎝⎛⎭⎫-13=-2+13=-213 D .-3-⎝⎛⎭⎫-12=-3+12=-2124.北京等5个城市的国际标准时间(单位:h )可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么( )第4题图A .首尔与纽约的时差为13hB .首尔与多伦多的时差为13hC .北京与纽约的时差为14hD .北京与多伦多的时差为14h 5.下列说法正确的是( ) A .减去一个数,等于加上这个数 B .零减去一个数,仍是这个数 C .两个相反数相减得零D .在有理数减法中,被减数不一定比减数或差大6.(1)某潜艇从海平面以下27m 处上升到海平面以下18m 处,此潜艇上升了____________m ;(2)若a 与-1的差为-1,则a =____________.7.计算:3-(-6)=____________;|-5|-(-5)=____________;0-8=____________;-3+3=____________;-3-3=____________;0-(-3)=____________.8.两个数相加,一个加数是2.6,和是-32.4,则另一个加数是____________. 9.-3比-10大____________,____________比-2.5小3.10.(1)若b <0,则在a ,a -b ,a +b 三个数中,最大的是____________;(2)点A ,B ,C 在同一条数轴上,其中A ,B 表示的数分别为-3,1.若BC =2,则AC 等于____________.11.计算: (1)12-(-13);(2)(-5)-(-9);(3)4.6-(+7.32);(4)-1.7-(-3.5)-1.8.12.列式计算:(1)求-12的绝对值的相反数与312的差;(2)已知两个数的和是-649,其中一个加数是219,求另一个加数.13.某一矿井的示意图如图所示,以地面为基准,A 点的高度是+4.2m ,B 点的高度为-15.6m ,C 点的高度为-30.5m.请问:A 点比B 点高多少?B 点比C 点高多少?第13题图14.世界第一高峰珠穆朗玛峰最新测量高度大约是海拔8844.43m ,较之前的数据8848.13m 减少了多少米?它比海拔为-154m 的吐鲁番盆地高出多少米?B组自主提高15.把全班学生分成五个队进行游戏,每队的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各队的得分情况如下表:问:(1)红队比黄队低多少分?(2)白队比蓝队高多少分?(3)第一名超出第五名多少分?16.请你借助于数轴,求下列每对数在数轴上对应点之间的距离.(1)5,3;(2)4,8;(3)2,-1;(4)-3,-5.通过计算,你能发现两点间的距离与这两数的差有什么关系吗?你能求出2016与-2016这对数在数轴上对应的两点之间的距离吗?C组综合运用17.一辆货车从超市出发,向东行驶了3km到达小彬家,继续向东行驶了1.5km到达。
人教版七年级数学上册第一章达标检测卷一、选择题(每题3分,共30分)1.如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃ 2.-12 022的相反数是( ) A .12 022 B .-12 022C .2 022D .-2 022 3.下列各数中,最小的数是( ) A .-3 B .0 C .1 D .2 4.有理数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1-m >1C .mn >0D .m +1>05.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3C .(-3)2÷(-2)2=32D .0-7-2×5=-176.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106 吨.用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106B .16×106C .1.6×107D .16×10127.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .MB .NC .PD .O 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-11 10.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5 二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 022的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米.14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________. 17.有5袋苹果,以每袋50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________. 18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.19.按照如图所示的计算程序,若x =2,则输出的结果是________.20.某校建立了一个身份识别系统,图①是某名学生的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行所代表的数字从左往右依次记为a ,b ,c ,d ,那么可以转换为该生所在的班级序号,其序号为a ×23+b ×22+c ×21+d ,如图①,第一行数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生,则图②识别图案的学生所在班级序号为________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分) 21.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd 的值.24.若“⊗”表示一种新运算,规定a ⊗b =a ×b +a +b ,请计算下列各式的值. (1)-6⊗2;(2)[(-4)⊗(-2)]⊗12.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上). (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?27.观察下列等式并回答问题.第1个等式:a 1=11×3=12×⎝⎛⎭⎪⎫1-13;第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15;第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝⎛⎭⎪⎫17-19;….(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A 2.A 3.A 4.B 5.D 6.C 7.A 8.C 9.B 10.A二、11.-3;-1 2 02212.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.77 14.百分15.0;-4 16.-3或117.244千克18.-1 19.-2620.6三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|. 22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9 .(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗1 2=2×12+2+12=32. 25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m),第三次:8+5=13(m),第四次:13-6=7(m),第五次:7+12=19(m),第六次:19-9=10(m),第七次:10+4=14(m),第八次:14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m.(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会. 27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.人教版七年级数学上册第二章达标检测卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 32.若-x 3y a 与x b y 是同类项,则a +b 的值为( )A .2B .3C .4D .5 3.下列说法中正确的是( )A .-10不是单项式B .单项式-13ab 的系数是13,次数是2C.-3xy是二次单项式D.2πab2的系数是2,次数是44.下列去括号运算中,错误的是( )A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b5.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是( ) A.99 B.101 C.-99 D.-1016.按如图所示的运算程序,能使输出y值为1的是( )A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 7.某淘宝店家为迎接“双十一”抢购活动,在甲批发市场以每件a元的价格进了40件童装,又在乙批发市场以每件b元(a>b)的价格进了同样的60件童装.如果店家以每件a+b2元的价格卖出这款童装,全部卖完后,这家店( )A.盈利了 B.亏损了 C.不盈不亏 D.盈亏不能确定8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n29.当1<a<2时,式子|a-2|+|1-a|的值是( )A.-1 B.1 C.3 D.-310.把灰色三角形按如图所示的规律拼图案,其中第①个图案中有1个灰色三角形,第②个图案中有3个灰色三角形,第③个图案中有6个灰色三角形,……,按此规律排列下去,则第⑤个图案中灰色三角形的个数为( )A.10B.15C.18D.21二、填空题(每题3分,共30分)11.用式子表示“比a 的平方的一半小1的数”是________. 12.单项式-xy 23的系数是________,次数是________.13.按照如图所示的步骤操作,若输入x 的值为-4,则输出的值为________. 14.如果单项式-x 3y 与x a y b -1是同类项,那么(a -b )2 022=________.15.已知a ,b 在数轴上的位置如图所示,化简|a |+|b -a |-2|a +b |的结果是________.16.若a +b =2 023,则当x =1时,多项式ax 3+bx +1的值是________.17.一根铁丝的长为(5a +4b )m ,剪下一部分围成一个长为a m ,宽为b m 的长方形,则这根铁丝还剩下_________m.18.小明在求一个多项式减去x 2-3x +5的结果时,误算成这个多项式加上x 2-3x +5,得到的结果是5x 2-2x +4,则正确的结果是__________. 19.随着通信市场竞争的日益激烈,为了占领市场,甲公司推出的话费优惠措施是:每分钟降低a 元,再下调25%;乙公司推出的话费优惠措施是:每分钟下调25%,再降低a 元.若甲、乙两公司原来话费每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.20.如图,每幅图中有若干个大小不同的平行四边形,第1幅图中有1个平行四边形,第2幅图中有3个平行四边形,第3幅图中有5个平行四边形,若第n 幅图中有2 021个平行四边形,则n =________.三、解答题(23题8分,26题12分,其余每题10分,共60分) 21.先去括号,再合并同类项:(1)(5a -3a 2+1)-(4a 3-3a 2);(2)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab ].22.先化简,再求值:(1)3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.23.已知一个多项式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2-ab+b2)-(3a2+ab+b2),再求它的值.24.一名同学做一道题,已知两个多项式A,B,计算2A-B,他误将“2A-B”看成“A-2B”,求得的结果为9x2-2x+7,已知B=x2+3x-2,求2A-B 的正确答案.25.李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.26.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x 把椅子.(1)若x=100,请计算哪种方案省钱;(2)若x>100,请用含x的式子分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.答案一、1.B 2.C 3.C 4.B 5.D 6.D7.A 8.C 9.B10.B 提示:因为第①个图案中灰色三角形的个数为1,第②个图案中灰色三角形的个数为3,且3=1+2,第③图案中灰色三角形的个数为6,且6=1+2+3,…所以第⑤个图案中灰色三角形的个数为1+2+3+4+5=15.二、11.12a2-1 12.-13;313.-6 14.115.3b提示:由题图可知a<0,b>0,且|a|>|b|,所以b-a>0,a +b<0,所以原式=-a+(b-a)+2(a+b)=-a+b-a+2a+2b=3b.16.2 024 17.(3a+2b)18.3x2+4x-619.乙提示:设甲、乙两公司原来的收费为每分钟b元(0.75b>a),则推出优惠措施后,甲公司每分钟的收费为(b-a)×75%=0.75b-0.75a(元),乙公司每分钟的收费为(0.75b-a)元,0.75b-a<0.75b-0.75a,所以乙公司收费较便宜.20.1 011三、21.解:(1)原式=5a-3a2+1-4a3+3a2=-4a3+5a+1.(2)原式=-2ab+6a2-2b2+5ab+a2-2ab=7a2+ab-2b2.22.解:(1)原式=3m+4n-2m-5m+2n+3n=-4m+9n.当m=1n=2,即m=2,n=12时,原式=-4m+9n=-4×2+9×12=-72.(2)(32x2-5xy+y2)-[-3xy+2⎝⎛⎦⎥⎤14x2-xy)+23y2=32x2-5xy+y2+3xy-12x2+2xy-23y2=x2+13y2.因为|x-1|+(y+2)2=0,所以x-1=0且y+2=0,所以x=1,y=-2.所以原式=x2+13y2=12+13×(-2)2=73.23.解:(1)(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得a +3=0,2-2b=0,解得a=-3,b=1.(2)原式=3a2-3ab+3b2-3a2-ab-b2=-4ab+2b2,当a=-3,b=1时,原式=-4ab+2b2=-4×(-3)×1+2×12=14.24.解:A=(9x2-2x+7)+2(x2+3x-2)=9x2-2x+7+2x2+6x-4=11x2+4x+3.所以2A-B=2(11x2+4x+3)-(x2+3x-2)=22x2+8x+6-x2-3x+2=21x2+5x+8.25.解:(1)这套新房的面积为2x+x2+4×3+2×3=x2+2x+12+6=x2+2x +18(m2).(2)当x=6时,这套新房的面积是x2+2x+18=62+2×6+18=36+12+18=66(m2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.26.解:(1)当x=100时,方案一:100×200=20 000(元),方案二:100×(200+80)×80%=22 400(元),因为20 000<22 400,所以方案一省钱.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000,方案二:(100×200+80x)×80%=64x+16 000.(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32 800(元),36 000>35 200>32 800,则先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子最省钱.人教版七年级数学上册第三章达标检测卷一、选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是( )A.1+2+3+4=10 B.2x-3 C.x-13=x2+1 D.x+3=y2.下列等式变形中,正确的是( )A.若a=b,则a-3=3-b B.若xa=ya,则x=yC.若ac=bc,则a=b D.若ba=dc,则b=d3.方程-2x+3=7的解是( )A.x=5 B.x=4 C.x=3.5 D.x=-2 4.下列方程的变形中,正确的是( )A.将方程3x-5=x+1移项,得3x-x=1-5B.将方程-15x=5两边同除以-15,得x=-3C.将方程2(x-1)+4=x去括号,得2x-2+4=xD.将方程x3+y4=1去分母,得4x+3y=15.设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是( ) A.0.4 B.2.5 C.-0.4 D.-2.56.若关于x的方程2x-m3=1的解为x=2,则m的值是( )A.2.5 B.1 C.-1 D.37.已知方程7x+2=3x-6与关于x的方程x-1=k的解相同,则3k2-1的值为( )A.18 B.20 C.26 D.-26 8.某项工程甲单独做5天完成,乙单独做10天完成.现在由甲先做2天,然后甲、乙合作完成此项工程.若设甲一共做了y天,则所列方程正确的是( )A.y+25+y10=1 B.y5+y+210=1C.y5+y-210=1 D.y5+25+y-210=19.方程2x-■3-x-32=1中有一个数被墨水盖住了,看答案知道,这个方程的解是x=-1,那么被墨水盖住的数是( )A.27B.1 C.-1311D.010.现有m辆客车、n个人.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.据此列出下列四个等式:①40m+10=43m-1;②n+1040=n+143;③n-1040=n-143;④40m+10=43m+1.其中正确的是( )A.①② B.②④ C.②③ D.③④二、填空题(每题3分,共30分)11.已知(m-4)x|m|-3+2=0是关于x的一元一次方程,则m的值为________.12.已知x-2y+3=0,则-2x+4y+2 022的值为________.13.若-0.2a3x+4b3与12ab y是同类项,则xy=________.14.已知y=3是关于y的方程ay=-6的解,那么关于x的方程4(x-a)=a-(x-6)的解是________.15.在解方程1-10x-16=2x+13的过程中,①去分母,得6-10x-1=2(2x+1);②去括号,得6-10x-1=4x+1;③移项,得-10x-4x=1-6+1;④合并同类项,得-14x=-4;⑤系数化为1,得x=72.其中开始出现错误的步骤是________.(填序号)16.如果规定“*”的意义为:a*b=a+2b2(其中a,b为有理数),那么方程3*x=52的解是________.17.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分.两队一共比赛了10场,甲队保持不败,得22分.甲队胜________场.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,问按喇叭时,汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y米,根据题意,可列方程为______________.19.在如图所示的运算流程中,若输出的数y=7,则输入的整数x=____________.20.如图,两根铁棒直立于桶底水平的木桶中,在木桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm,此时木桶中水的深度是________.三、解答题(21题12分,22题8分,其余每题10分,共60分)21.解下列方程:(1)5y-3=2y+6;(2)2(x-2)-3(4x-1)=5(1-x);(3)7x-13-5x+12=2-3x+24; (4)2x0.3-1.6-3x0.6=31x+83.22.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x-1=3x+1的解大3?23.下面是小红解方程2x+13-5x-16=1的过程:解:去分母,得2(2x+1)-5x-1=1.①去括号,得4x+2-5x-1=1.②移项,得4x-5x=1-2+1.③合并同类项,得-x=0.④系数化为1,得x=0.⑤上述解方程的过程中,是否有错误?答:________(填“有”或者“没有”);如果有错误,则开始出错的一步是________(填序号).如果上述解方程有错误,请你给出正确的过程.24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某购买瓶数/瓶不超过30 30以上不超过50 50以上单价/元 3 2.5 226.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少人准备参加演出?(3)如果甲校有10名同学要去参加书法绘画比赛不能参加演出,请为两校设计一种最省钱的购买服装方案.答案一、1.C 2.B 3.D 4.C 5.B 6.B 7.C 8.C 9.B 10.D二、11.-4 12.2 028 13.-314.x=-4515.①16.x=1 17.618.2y-100=1 700 提示:由题意可知,5秒后,汽车前进的距离为5×20=100(米),声音传播的距离为5×340=1 700(米),根据等量关系可列方程为2y-100=1 700.19.27或28 20.20 cm三、21.解:(1)移项,得5y-2y=6+3.合并同类项,得3y=9.系数化为1,得y=3.(2)去括号,得2x-4-12x+3=5-5x,移项,得2x-12x+5x=5+4-3,合并同类项,得-5x=6,系数化为1,得x=-6 5 .(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x-4-30x-6=24-9x-6,移项,得28x-30x+9x=24+6+4-6,合并同类项,得7x=28,系数化为1,得x=4.(4)原方程可化为20x3-16-30x6=31x+83.去分母,得40x-(16-30x)=2(31x+8).去括号,得40x-16+30x=62x+16.移项,得40x+30x-62x=16+16.合并同类项,得8x=32.系数化为1,得x=4.22.解:解方程2x-1=3x+1,得x=-2,由题意,得方程5m+3x=1+x的解是x=-2+3=1,把x=1代入5m+3x=1+x中,解得m=-1 5 .23.解:有;①正确的过程如下:去分母,得2(2x+1)-(5x-1)=6.去括号,得4x+2-5x+1=6.移项,得4x-5x=6-2-1.合并同类项,得-x=3.系数化为1,得x=-3.24.解:设大正方形的边长为x厘米,由题图可得x-2-1=4+5-x,解得x=6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设第一次购买这种饮料x瓶,则第二次购买(90-x)瓶,①若第一次购买饮料50瓶以上,第二次购买饮料不超过30瓶,则2x+3(90-x)=205,解得x=65,得90-65=25(瓶).因为65>50,25<30,所以此情况成立.②若第一次购买饮料50瓶以上,第二次购买饮料30瓶以上不超过50瓶,则2x+2.5(90-x)=205,解得x=40.因为40<50,所以此情况不成立.③若第一次和第二次均购买饮料30瓶以上,但不超过50瓶,则2.5×90=225(元).因为两次购买饮料共用去205元,所以此情况也不成立.故第一次购买饮料65瓶,第二次购买饮料25瓶.26.解:(1)由题意得:5 000-92×40=1 320(元)答:甲、乙两校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲校有x人准备参加演出,则乙校有(92-x)人准备参加演出.由题意,得50x+60(92-x)=5 000,解得x=52,则92-x=40.答:甲、乙两校分别有52人、40人准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出,所以两校参加演出的人数为42+40=82(人).若两校联合购买82套服装,则需要50×82=4 100(元),但如果两校联合购买91套服装,只需40×91=3 640(元),3 640<4 100,因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).人教版七年级数学上册第四章达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是( ) A.∠COE B.∠BOCC.∠BOE D.∠AOC2.下列作图语句错误..的是( )A.延长线段ABB.延长射线ABC.过直线外一点P作直线m的平行线D.在射线AB上截取线段AC,使AC=3 cm3.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间,直线最短D.若AB=BC,则点B为AC的中点4.下列立体图形中,都是柱体的为( )5.如图,表示∠1的其他方法中,不正确...的是( )A.∠ACB B.∠CC.∠BCA D.∠ACD6.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A.圆柱 B.圆锥 C.球体 D.棱锥7.如图,下列说法中错误..的是( )A.OA方向是北偏东30° B.OB方向是北偏西15°C.OC方向是南偏西25° D.OD方向是东南方向8.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是( )A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm9.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( )A.144° B.164° C.154° D.150°10.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( )A.7 B.6 C.5 D.4二、填空题(本题共6小题,每小题3分,共18分)11.11°23′26′′×3=________.12.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =______________.13.如图,图中线段有________条,射线有________条.14.如果一个角的补角比这个角的余角的3倍大10°,则这个角的度数是________.15.将线段AB延长至点C,使BC=13AB;延长BC至点D,使CD=13BC;延长CD至点E,使DE=13CD.若CE=8 cm,则AB=________ cm.16.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,则∠AOC+∠DOB=________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,已知线段a,b,画一条线段,使它等于3a-b(用直尺和圆规画图,不要求写画法).18.(8分)一个角的余角比它的补角的13还少20°,求这个角的度数.19.(8分)如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.20.(8分)如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB.若AB=24 cm,求线段CE的长.21.(10分)如图,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.(1)求∠AOB的度数;(2)①求∠DOC和∠AOE的度数;②判断∠DOE与∠AOB是否互补,并说明理由.22.(10分)已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图,当OB,OC重合时,求∠EOF的度数;(2)当∠COD从如图所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE-∠BOF的值是否为定值?若是定值,求出∠AOE-∠BOF的值;若不是,请说明理由;(3)当∠COD从如图所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=________.答案一、1.A 2.B 3.A 4.C 5.B 6.B 7.A 8.C 9.C 10.C二、11.34°10′18′′12.11 cm或5 cm13.6;614.50°15.5416.180°三、17.解:如图,AE=3a-b.18.解:设这个角的度数为x.依题意,得90°-x+20°=13(180°-x),解得x=75°.答:这个角的度数为75°. 19.解:如图所示.20.解:因为点C是AB的中点,所以AC=BC=12AB=12×24=12(cm).所以AD=23AC=23×12=8(cm).所以CD=AC-AD=12-8=4(cm).因为DE=35AB=35×24=14.4(cm),所以CE=DE-CD=14.4-4=10.4(cm).21.解:(1)∠AOB=∠BOC+∠AOC=60°+58°=118°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°.故∠DOE与∠AOB不互补.22.解:(1)因为OE平分∠AOC,OF平分∠BOD,所以∠EOB=12∠AOB=12×100°=50°,∠COF=12∠COD=12×40°=20°,所以∠EOF=∠EOB+∠COF=50°+20°=70°. (2)当0<n≤80时,如图①,∠AOE-∠BOF的值是定值.∠AOC=∠AOB+n°,∠BOD=∠COD+n°.因为OE平分∠AOC,OF平分∠BOD,所以∠AOE=12∠AOC=12(100°+n°),∠BOF=12∠BOD=12(40°+n°),所以∠AOE-∠BOF=12(100°+n°)-12(40°+n°)=30°.当80<n<90时,如图②,∠AOE-∠BOF的值不是定值.理由如下:∠AOE=12(360°-100°-n°)=130°-12n°,∠BOF=12(40°+n°),则∠AOE-∠BOF=110°-n°,不是定值.(3)30或50或90提示:当0<n<40时,C和D在OA的右侧,如图①.∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD-∠DOF=12(100°+n°)+40°-12(40°+n°)=70°.因为∠AOD+∠EOF=6∠COD,所以(140°+n °)+70°=6×40°, 解得n =30.当40≤n <80时,如图②所示,D 在OA 的左侧,C 在OA 的右侧. ∠AOD =360°-∠AOB -∠COD -n °=220°-n °,∠EOF =70°. 因为∠AOD +∠EOF =6∠COD ,所以(220°-n °)+70°=6×40°, 解得n =50.当80≤n <140时,如图③所示.∠AOD =360°-100°-40°-n °=220°-n °,∠EOF =360°-⎝ ⎛⎭⎪⎫130°-12n °-12(40°+n °)-100°=110°,则(220°-n °)+110°=6×40° ,解得n =90.当140≤n <180时,如图④所示.∠AOD =360°-100°-40°-n °=220°-n °,∠EOF =360°-12(360°-n °-40°)-12(360°-n °-100°)-n °=70°,则(220°-n °)+70°=6×40°, 解得n =50(舍去).。
南二十铺学校七年级第三次数学检测试卷一、选择题(每小题3分,10道题,共30分)1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A. 3个B. 4个C. 5个D. 6个 2.下面计算正确的是( )A .2233x x -= B. 235325a a a += C .33x x += D. 10.2504ab ab -+=3. 已知2y 32x和32mxy -是同类项,则式子4m-24的值是( )A. 20B. -20C. 28D. -284.已知点A 、B 都在同一条数轴上,点A 表示-2,又已知点B 和点A 相距5个单位长度,则点B 表示的数是( )A .3B .-7C .7或-3D .-7或35.有理数a ,b ,c 在数轴上的位置如图所示,则化简|a +b|-|b -1|-|a -c|-|1-c|得的结果是( ) A .-2a B .-2 C .2c-2a-2 D .2b-2c6.)]([n m ---去括号得( )A 、n m -B 、n m --C 、n m +-D 、n m + 7.下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-=D .12x x-=8.2=x 是下列方程( )的解。
A 、11-=-x ;B .02=+x ;C 、513=-x ;D .421=x 。
9.在解方程:13121=--+x x 时,去分母正确的是( )。
A 、11213=--+x x ; B .61213=--+x x ; C 、11213=--+)()(x x ; D . 61213=--+)()(x x 。
10.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )。
A 、54B .27C 、72D .45二、填空题(每小题3分,8道题,共24分)11、迎迎头上有大约1500000根头发,用科学记数法表示为 _ 根。
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √3B. πC. -2/3D. 2√22. 下列各数中,最小的数是()A. -1/2B. 0C. 1/2D. -23. 如果a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 34. 下列等式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²5. 下列各式中,不是代数式的是()A. 2x + 3B. 3a² - 5a + 2C. 5/2xD. 56. 下列各数中,绝对值最大的是()A. -5B. -3C. -2D. 07. 下列各数中,是偶数的是()A. -3B. 4C. -4D. 38. 下列各数中,是正数的是()A. -2B. 0C. 1/2D. -1/29. 下列各数中,是负数的是()A. -3/4B. 0C. 3/4D. 110. 下列各数中,是分数的是()A. √2B. -3/2C. πD. 2二、填空题(每题3分,共30分)11. 有理数a和b,如果a > b,那么a - b一定是()12. (a + b)² = _______,(a - b)² = _______13. 绝对值大于2的有理数有 _______,_______,_______,_______14. 如果a = -3,那么|a| = _______15. 下列各数中,是偶数的是 _______,是正数的是 _______16. 下列各数中,是负数的是 _______,是分数的是 _______17. 下列各数中,绝对值最小的是 _______18. 如果a和b都是正数,那么a + b一定是 _______,a - b一定是 _______三、解答题(每题10分,共40分)19. 简化下列各式:(1) 3a + 2b - 5a + 4b(2) 5(2x - 3) - 3(4x + 2)(3) 2(3a - 4b) + 5(2a + b)20. 求下列代数式的值:(1) 如果a = 2,b = -3,求2a - 3b的值。
一、选择题(每题3分,共30分)1. 下列数中,是负数的是()A. -3B. 0C. 2D. -5/22. 下列各数中,有理数是()A. √2B. πC. -1/3D. √-13. 在数轴上,点A表示的数是-2,那么表示点B的数是()A. -4B. -1C. 1D. 44. 如果a、b是实数,且a > b,那么下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a/b > 05. 已知m、n是相反数,且m - n = 5,那么m的值是()A. 5B. -5C. 0D. 106. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 长方形7. 一个长方形的长是10cm,宽是6cm,那么它的面积是()A. 54cm²B. 60cm²C. 96cm²D. 100cm²8. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 2C. 5x = 0D. 2x + 3 = 09. 如果a、b是实数,且a² = b²,那么下列结论正确的是()A. a = bB. a = -bC. a² = b²D. a = ±b10. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x²C. y = 5xD. y = 4x + 1二、填空题(每题5分,共25分)11. -3的相反数是__________,-5的绝对值是__________。
12. 在数轴上,表示-2的点到原点的距离是__________。
13. 如果a = 3,b = -2,那么a + b的值是__________。
14. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是__________cm。
七年级上册数学人教版第一次月考测试卷(1-3章)一、选择题(本大题共12 个小题,每小题3分,共36分)1.下列说法中不能表示代数式“5x”的意义的是 ( )A. x 的5倍B.5 和x 相乘C.5个x 相加D. x 个5相乘2.下列运算结果为正数的是 ( )A.(−3)²B. -3÷2C.0×( -2024)D.2-33.下列对代数式 1b −a 的描述,正确的是 ( )A. b 的相反数与a 的差B. b 与a 的差的倒数C. a 的相反数与b 的差的倒数D. b 的倒数与a 的差4.与 −(13−14)互为倒数的是 ( ) A.−13×4 B.3×4C.13×4D. -3×4m 个25.计算: 2×2×⋯×23+3+⋯+3的结果为 ( )一个3A.2m 3nB.2m 3nC.2m n 3D.m 23n 6.如图,在数轴上,点A 表示的数是6,将点A 沿数轴向左移动a(a>6)个单位长度得到点P ,则点P 表示的数可能是 ( )A.0B. -1C.0.5D.27.如果甲、乙是两个成反比例的量,那么当甲增加50%时,乙一定会 ( )A.增加50%B.减少50%C. 减 23D.减 138.已知光速为300000 km/s,光经过 ts(1≤t≤10)传播的距离用科学记数法表示为a×10" km,则n 可能为 ( )A.5B.6C.5 或6D.5或6或79.已知a=-2,b=1,c=-1,下列各式中最小的是 ( )A. a+b+cB. a+b-cC. a-b+cD. a-b-c10.点A,B在数轴上的位置如图,其对应的数分别是a和b.对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:|b|>0.其中正确的是 ( )A.甲、乙B.丙、丁C. 甲、丙D.乙、丁11.下列计算正确的是 ( )−20×(−37)=1507A.−30×37B.(−23+45)÷(−115)=−2C.(12−13)÷(13−14)×(14−15)=310÷(+45)×(−827)=0D.−4512.对于正整数x,我们可以用符号f(x)表示代数式,并规定:若x为奇数,则f(x)=3x+1;若x为偶数,则f(x)=1x.例如:f(1) =4,f(10) =5.设x1=6,x2=f(x1),x3=f(x2),⋯,依此规律进行下去,得到2一列数:x₁,x₂,x₃,…,xₙ((n为正整数),则x1−x2+x3−x4+⋯+x2023−x2024的值是( )A.16B.18C.20D.2024二、填空题(本大题共4个小题,每小题3分,共12分)而小于2的所有整数是 .13.大于−23414.已知γ=x-1,则((x−y)²+(y−x)+1的值为15.如图是一个计算程序,若输入的值为1,则输出的值应为 .16.如图是某种杆秤,在秤杆的点A 处固定提纽,点 B处挂秤盘,点C为O 刻度点. 当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点 C,秤杆处于平衡状态.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为γ毫米时秤杆处于平衡状态. 测得x与γ的几组对应数据如下表:x(克)0246810y(毫米101418222630)由表中数据的规律可知,当x =20 时,y=三、解答题(本大题共8个小题,共72分)17.(6分)某书店新进了一批图书,甲、乙两种书的进价分别为4 元/本、10 元/本. 现购进m本甲·种书和n本乙种书,共付款P元.(1)用含 m,n的代数式表示 P;(2)若共购进5×10⁴本甲种书及3×10³本乙种书,用科学记数法表示 P的值.18.(8分)如图,小林为“小鱼”设计了一个计算程序.输入x值,由上面的一条运算路线从左至右逐步进行运算得到m,由下面的一条运算路线从左至右逐步进行运算得到n.如输入x=1,得到m=1×(-3)+(-2)=-5,n=(1-4)÷(−2)=3.2(1)若输入x=2,试比较m与n的大小;(2)若得到 m=10,求输入的x值及相应n的值.19.(8分)有理数a,b在数轴上的对应点的位置如图所示.(1)比较大小: ab 0,b-1 0,a-b 0;(2)化简:|a|+|b|-|b-1|.20.(9分)老师设计了接力游戏,用合作的方式完成有理数运算,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图:(1)接力中,计算错误的学生是;(2)请给出正确的计算过程.21.(9分)某中学七年级一班有44人,一次数学活动中分为四个组,第一组有a人,第二组人数比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数;(用含 a的代数式表示,不用化简)(2)夕夕通过计算发现:“第一组不可能有12人.”你同意她的答案吗? 请说明理由.22.(10分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×( -15);+999×(−15)−999×1835.(2)999×1184523.(10分)【阅读理解】已知代数式x²+x+3的值为9,求代数式2x²+2x−3的值.嘉琪采用的方法如下:由题意,得x²+x+3=9,则有x²+x=6.所以2x²+2x−3=2(x²+x)−3=2×6−3=9.所以代数式2x²+2x−3的值为9.【方法运用】(1)若−x²=x+2,则x²+x+3=.(2)若代数式x²+x+1的值为15,求代数式−2x²−2x+3的值.【拓展应用】(3)若x²+2xy=−2,xy−y²=−4,求代数式4x²+7xy+y²的值.24.(12分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价为30元,乒乓球每盒定价为10 元.现两家商店搞促销活动,甲商店的优惠方案:每买一副乒乓球拍赠一盒乒乓球;乙商店的优惠方案:按定价的9折出售.某班需购买乒乓球拍6副,乒乓球若干盒(不少于6盒).(1)用代数式表示(所填式子需化简):当购买乒乓球拍6副,乒乓球x(x≥6,且x为整数)盒时,在甲商店购买共需付款元,在乙商店购买共需付款元.(2)当购买乒乓球拍6副,乒乓球15 盒时,到哪家商店购买比较省钱? 说出你的理由.(3)当购买乒乓球拍6副,乒乓球15 盒时,你能给出一种更省钱的购买方案吗? 试写出你的购买方案,并求出此时需付款多少元.。
第一章——第三章检测题 姓名:
一、选择题 (每题3分,共30分)
1.我国继“神舟六号”成功升空并安全返回后,于2007年向距地球384401千米的月球发射了“嫦娥一号”卫星,这是我们中国人的骄傲。
用科学记数法并保留三个有效数字表示地球到月球的距离是( )千米
A.3.84×106
B.3.84×105
C.3.85×106
D.3.85×105
2.下列各组数中,不相等的是( )
A.(-3)2
与-32
B.(-3)2
与32
C.(-2)3
与-23
D .3
3
22--与
3.对于有理数a ,b 有下列几种说法正确的有( )
①若a+b=0,则a 与b 互为相反数,②若a+b<0,则a 与b 异号,
③a+b>0,若a ,b 同号,则ab>0,④若|a|>|b|,且a ,b 同号,则a+b>0. A.3个 B.2个 C.1个 D.0个 4.若532-+x x 的值为7,则2932-+x x 的值为( )
A.0
B.24
C.34
D.44 5.下列各式中,是一元一次方程的有( )个
①572=+- ②1023=-x ③0=x ④x x 8742=-
A.0
B.1
C.2
D.3
6.已知3=x 是关于x 的方程12-=+x m x 的解,则()21+m 的值是( ) A.1 B.9 C.0 D.4
7.已知5
1-x 3y 2n 与2x 3m y 2
是同类项,则mn 的值是( )
A .1
B .3
C .6
D .9
8.已知两个有理数a 、b ,如果ab <0,且a+b <0,那么( ) A.a >0 b >0, B.a <0,b >0
C.a 、b 异号
D.a 、b 异号,且负数的绝对值较大
9.一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为( )
A .17
B .18
C .19
D .20
10.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家( )
A.不赔不赚
B.赚了10元
C.赚了8元
D.赚了32元 二、填空题(每题3分,共24分)
11.-3的倒数是___ ,数轴上到原点的距离是6个单位长度的数表示为 . 12.代数式23
2
a π-的系数是______,数轴上与点 3的距离为2的点是____ .
13.若0)4(|1|2=-++b a ,则_______=b a .
14.一个多项式加上-3x+x-2x 2
得到x 2
-1,那么这个多项式为 . 15.当=x 时,35=-x .
16.已知代数式x x 42-的值是3,则代数式2007822+-x x 的值是 .
17.若a,b 互为倒数,c,d 互为相反数,m 为最大负整数,则m d
c ab m 43+++= .
18.下列算式:21
=2,22
=4,23
=8,24
=16,25
=32,26
=64,…通过观察,用你所发
现的规律,22013
写出的个位数字是_______. 三、解答题
19.计算解方程(每题4分,共24分)
⑴()429441281⨯⎪⎭⎫ ⎝⎛-⨯÷- ⑵()7221543
-⨯+⎪⎭
⎫
⎝⎛-÷-
⑶()()b a b a ---2322 ⑷()()xy y x y x xy 5382222++--+- ⑸6
34142x
x --
=- ⑹3123213--=-+x x x
20.(6分)化简求值:2222)32(3)(2x xy x xy x ----,其中x=2,y=3.
21.(8分)已知方程()5413-=-x x 与
12
32=---a
x a x 有相同的解,求a 的值.
22.(6分)李师傅加工一批零件,如果每天做50个,要比原计划晚8天完成,如果每天做60个,就可以提前5天完成,这批零件共有多少个?
23.(6分)一家服装超市将某种服装按进价提高30﹪后标价,然后又以9折优惠卖出,结果每件服装仍可获利34元,问这种服装每件的进价是多少元?
24.(8分)中国移动四川分公司开设适合普通用户的两种通讯业务分别是:“天山通”用户先缴25元月租,然后每分钟通话费用0.2元;“神州行”用户不用
缴纳月租费,每分钟通话0.4元。
⑴设一个月内通话时间约为x 分钟,这两种用户每月需缴的费用是多少元? ⑵一个月内通话多少分钟,两种移动通讯方式费用相同? ⑶若李老师一个月通话约80分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?请说明理由.
25.(8分)某牛奶加工厂现有鲜奶10吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成. 你认为选择哪种方案获利最多,为什么?。