对称振子天线_阵列天线
- 格式:ppt
- 大小:1.51 MB
- 文档页数:23
■开课目的“阵列天线分析与综合”是电子信息工程专业电磁场与微波通信方向的专业选修课程。
课程的任务是使学生掌握阵列天线的基本理论、基本分析与综合方法,掌握单脉冲阵列、相控阵扫描天线的基本理论和概念、以及阵列天线的优化设计思想,培养学生分析问题和解决问题的能力,为今后从事天线理论研究、工程设计和开发工作打下良好的基础。
■课程要求●约有五次作业●考核平时成绩占20%。
包括平时作业,出勤情况。
期末考试成绩占80%(一页纸开卷)雷达阵列天线简介1、“AN/SPY—1”S波段相控阵雷达是海军“宙斯盾”(Aegis)武器系统中的一部分,由RCA公司研制。
它有四个相控阵孔径,提供前方半空间很大的覆盖范围。
接收时它使用带68个子阵的馈电系统,每个子阵包含64个波导辐射器,总共有68×64=4352个单元。
发射时,子阵成对组合,形成32个子阵,每个子阵128个单元,总共32×128=4096辐射单元。
移相器为5位二进制铁氧体移相器,直接向波导辐射器馈电。
为了避免相位量化误差引起的高副瓣电平,后来移相器改为7位二进制移相器,合成的相控阵由强制馈电功分网络馈电,辐射单元也改为4350个,单脉冲的和、差波瓣及发射波束均按最佳化设计。
AN/SPY—1天线正在进行近场测试(RCA公司电子系统部提供)目前该系统安装在导弹巡洋舰上导弹巡洋舰上的AN/SPY—1系统2、爱国者(PATRIOT)多功能相控阵雷达是Raytheon公司为陆军研制的一种多功能相控阵雷达系统。
其天线系统使用光学馈电的透镜阵列形式。
和差波瓣分别通过单脉冲馈源达到最佳。
孔径呈圆形,包含大约5000个单元,采用4位二进制铁氧体移相器和波导型辐射器单元。
它安装在车辆上,并可平叠以便于运输。
爱国者多功能相控阵雷达天线(Raytheon公司提供)3、机载预警和控制系统(AW ACS)世界上第一个具有超低副瓣的作战雷达天线是由西屋电气公司为AWACS 系统研制的。
实验五对称振子天线的设计与仿真一、实验目的1.设计一个对称振子天线2.查看并分析该对称振子天线的反射系数及远场增益方向二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理1、电流分布对于从中心馈电的偶极子,其两端开路,故电流为零。
工程上通常将其电流分布近似为正弦分布。
假设天线沿z轴放置,其中心坐标位于坐标原点,如图所示,则长度为l的偶极子天线的电流分布为:I(z)=Imsink(l-|z|),其中Im是波腹电流,k波数。
对半波偶极子而言l=λ/4.则半波偶极子的电流分布,可以写成:I(z)=Imsin(π/2-kz)=Imcos(kz)。
首先明白一点:半波偶极子天线就是对称阵子天线。
2、辐射场和方向图已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。
式中,称为半波偶极子的方向性函数。
3、方向系数:对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。
一臂的导线半径为,长度为I。
两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=21。
对称振子的长度与波长相比拟,本身己可以构成实用天线。
在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布,忽略振子损耗。
根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。
在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z),长度为dz的电流元件串联而成。
利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。
四、实验内容利用HFSS软件设计一个近似理想导体平面的UHF 对称振子天线。
中心频率为0.55GHz,采用同轴线馈电,并考虑平衡馈电的巴伦结构。
最后得到反射系数和二维辐射远场仿真结果。
五、实验步骤.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry复选框选中。
一种具有防雷保护功能的对称振子天线设计文章在L频段设计了一个对称振子天线,通过矩量法对天线尺寸进行了推导计算,并设计了一种特殊的馈电方式,使其在满足电性能要求的同时具备了防雷保护的功能。
仿真结果表明,天线电性能与理论设计值相符,满足水平全向的使用要求。
标签:对称振子天线;防雷保护;矩量法1 概述对称振子作为一种历史悠久的经典天线[1],具有结构简单,易于实现等特点,在雷达信标、敌我识别等领域中有着广泛应用。
在实际使用中,为了利用对称振子水平全向辐射特性,往往将对称振子垂直安装于设备平台的最高处,对称振子本身是金属件,暴露在空间中,相当于一个自然的接闪器,容易受到雷击而损坏。
针对这个问题,有文献[2]建议在天线旁架设避雷针,不失为一种有效的办法,但在具体实现中存在一定问题,比如在狭小的安装平台上应该如何处理架设距离和高度,如果避雷针过于靠近,便构成天线的单元,无论是干涉和反射都会对天线的方向性造成一定影响;如果避雷针架设过远,则会影响避雷针的保护范围,天线仍有可能受到雷击而损坏。
还有文献[3]提出为天线设计了自保护功能,从结构上给雷电在天线振子和安装架之间提供一条短接释放路径,由于90%的雷电能量分布在直流和低频,一旦发生雷击,短接释放路径可让雷电流安全入地。
这种做法保护了天线,消除了架设避雷针的不利影响,也提高了天线设计难度,目前还没有适用于对称振子的防雷设计办法,本文将提出一种防雷保护功能结合电性能设计的办法,在保证主要电性能指标的同时,从物理结构上实现对天线的防雷保护功能。
2 设计考虑关于对称振子分析和设计方法较多,最常见是运用矩量法来推导振子长短和粗细对辐射特性的影响。
运用矩量法的推导结论,选取合适的天线振子尺寸,可以保证天线振子的辐射性能,许多文献都有详细的推导,这里不再详述。
而对称振子馈电设计是实现防雷保护功能的重点,本文设计时有以下三点考虑:第一,分离高低频能量的传输路径。
通常采用图1(a)所示的传统馈电方式是不能分离高低频能量的传输路径,雷电流仅有一条传输路径,即通过芯线进入天馈线,会对馈电点或天馈线开路处造成伤害,所以分离高低频能量的传输路径是必需的。
第6章1、简述天线的功能(概念+4个功能)在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或将无线电波转变为导波能量,原来辐射和接收无线电波的装装置称为天线。
①天线应能将导波能量尽可能多地转变为电磁波能量.这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配.②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性.③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化.④天线应有足够的工作频带.2、名词解释:什么是天线?①作用:在发射部分,将高频导行波转换为空间电波,在接收端,空间电波转换为导行波。
②性能:是能量转换器件、具有定向辐射能力、频率选择特性、极化特性。
③结构:开放。
3、把天线和发射机或接收机连接起来的系统为馈线系统,天线和馈线系统统称天线馈线系统,简称天馈系统。
4、点电基本振子近区场又为准静态场;离天线较远时,近似为0;电场磁场相位差90°,为感应场。
远区场中电基本振子的的远区场是沿着径向外传的横电磁波,远区场又称辐射场。
E/H=120pi,远区场具有与平面波相同的特性。
随着距离增加,辐射场减小。
4、电,磁基本振子具有相同的方向函数,空间相互正交,相位差90°5、天线的电参数有哪些?①主瓣宽度:主瓣宽度是衡量天线的最大辐射区域的尖锐程度的物理量。
在场强方向图中,等于最大场强两点间的宽度,称为半功率波瓣宽度;或将头两个零点之间的角度作为主瓣宽度,即零功率波瓣宽度。
②旁瓣电平: 旁瓣电平是指离主瓣最近且电平最高的第一旁瓣电平, 一般以分贝表示。
③前后比: 前后比是指最大辐射方向(前向)电平与其相反方向(后向)电平之比, 通常以分贝为单位。
④方向系数:方向系数定义为: 在离天线某一距离处, 天线在最大辐射方向上的辐射功率流密度Smax与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度S0之比,记为D, 即天线方向系数的一般表达式为6、要使天线方向系数大,不仅要求主瓣窄,还要全空间的旁瓣电平小。
对称振子天线课程设计一、课程目标知识目标:1. 学生能理解对称振子天线的概念、原理和应用;2. 学生能掌握对称振子天线的阻抗特性、辐射特性及影响参数;3. 学生能运用相关公式计算对称振子天线的长度及间距。
技能目标:1. 学生能运用所学知识,分析对称振子天线的性能,并进行优化设计;2. 学生能通过实际操作,制作并测试对称振子天线;3. 学生能运用相关软件(如CST、HFSS等)进行对称振子天线的仿真分析。
情感态度价值观目标:1. 学生培养对无线电通信及天线技术的兴趣,增强对物理学科的学习热情;2. 学生通过团队协作,培养沟通、合作能力,增强集体荣誉感;3. 学生在学习过程中,培养严谨、细致的科学态度,提高解决问题的能力。
课程性质:本课程为高二年级物理选修课程,旨在让学生了解对称振子天线的基本原理和实际应用,提高学生的实践能力和创新能力。
学生特点:高二学生对物理学科有一定的基础,具备一定的分析、计算能力,对实际操作和新技术具有浓厚兴趣。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的积极性,提高学生的动手能力和创新能力。
在教学过程中,将目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 引入对称振子天线的基本概念,介绍其发展历程及应用领域;相关教材章节:第三章第1节“天线的基本概念与发展”2. 讲解对称振子天线的原理、结构特点及分类;相关教材章节:第三章第2节“对称振子天线的基本原理与结构”3. 详细阐述对称振子天线的阻抗特性、辐射特性及影响参数;相关教材章节:第三章第3节“对称振子天线的阻抗与辐射特性”4. 探讨对称振子天线的优化设计方法,包括长度、间距等参数的调整;相关教材章节:第三章第4节“对称振子天线的优化设计”5. 实践操作:指导学生制作对称振子天线,并进行测试;相关教材章节:第三章第5节“对称振子天线的制作与测试”6. 介绍相关软件(如CST、HFSS等)在对称振子天线仿真分析中的应用;相关教材章节:第三章第6节“对称振子天线的计算机仿真”7. 分析实际应用案例,让学生了解对称振子天线在现代通信系统中的作用;相关教材章节:第三章第7节“对称振子天线的应用实例”教学内容安排与进度:1. 第1课时:引入对称振子天线的基本概念、发展历程及应用领域;2. 第2课时:讲解对称振子天线的原理、结构特点及分类;3. 第3课时:详细阐述对称振子天线的阻抗特性、辐射特性及影响参数;4. 第4课时:探讨对称振子天线的优化设计方法;5. 第5课时:实践操作,制作对称振子天线并进行测试;6. 第6课时:介绍相关软件在对称振子天线仿真分析中的应用;7. 第7课时:分析实际应用案例,总结本章节内容。
《微波与天线技术》课程考查报告任务书专业:通信工程班级:OX姓名:OOXX学号:XXOO二零一三年一月课程内容总结本书共分为十章,包括微波技术、天线与电波传播和微波应用系统三个部分。
第一至五章为微波技术部分,主要讨论了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础和微波元器件,其中在微波集成传输线部分主要讨论了带状线、微带线、耦合微带线及介质波导的传输特性,并对光纤的传输原理及特性做了介绍;在“微波元器件”一章中,从工程应用的角度出发,重点介绍了具有代表性的几组微波元器件,主要包括连接匹配元件、功率分配元器件、微波谐振元件和微波铁氧体器件。
第六至九章为天线与电波传播部分,主要叙述了天线辐射与接收的基本理论、电波传播概论、线天线及面天线,其中在线天线部分侧重介绍了在工程中常用的鞭天线、电视天线、移动通信基站天线、行波天线、宽频带天线、微带天线等,还对智能天线技术做了简要介绍。
微波应用系统安排在第十章,主要讨论了雷达系统、微波通信系统级微波遥感系统三个典型系统。
上述三部分既相互联系有相互独立,下面将做详细说明。
微波技术部分一、均匀传输线理论1、均匀传输方程及其解(1)均匀传输线方程⎪⎪⎭⎪⎪⎬⎫==++)()_()()_(i u z I z I Γz U z U Γ 对于时谐振电压和电流,可得时谐传输线方程式中,L j R Z ω+= C j G Y ω+= 分别称为传输线单位长串联阻抗和单位长并联导纳。
(2)均匀传输线方程的解z sh Z I z ch U z U γγ011)(+= z sh Z Uz ch I z I γγ011)(+=(3)传输线的工作特性参数特性阻抗0Z ;传播常数γ;相速p ν与波长λ。
2、传输线阻抗与状态参量(1)输入阻抗: 对无耗均匀传输线, 线上各点电压U(z)、 电流I(z)与终端电压U1、终端电流Il 的关系如下:(2)反射系数: 传输线上任意一点z 处的反射波电压(或电流)与入射波电(或电流)之比为电压(或电流)反射系数, 即:(3)输入阻抗与反射系数的关系 )](1[)()()(1z e A z U z U z U z j Γ+=+=-+β )](1[)()()(01_z e Z A z I z I z I zj Γ-=+=+β tt z u C t z Gu z t z i ∂∂+=∂∂),(),(),(t t z i L t z Ri zt z u ∂∂+=∂∂),(),(),()()(z YU dzZ dI =)()(z ZI dzZ dU =⎪⎭⎪⎬⎫+=+=)sin(j )cos()()sin(j )cos()(011011z Z U z I z I z Z I z U z U ββββ3、无线传输线的状态分析无线传输线有以下三种工作状态:①行波状态;②纯驻波状态;③行驻波状态。
螺旋天线是一种具有螺旋形状的天线。
它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。
螺旋天线的辐射方向与螺旋线圆周长有关。
当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋旋轴方向上。
全向天线全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。
全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。
机械天线所谓机械天线,即指使用机械调整下倾角度的移动天线。
电调天线所谓电调天线,即指使用电子调整下倾角度的移动天线。
施主天线移动基站BTS用的一种收发天线.也就是收发到用户(手机)的天线。
不定向天线在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状天线等。
V形天线是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。
其结构如图4所示,它的终端可以开路,也可以接有电阻,其电阻的大小等于天线的特性阻抗。
V形天线具有单向性,最大发射方向在分角线方向的垂直平面内。
它的缺点是效率低、占地面积大。
介质天线介质天线是一根用低损耗高频介质材料(一般用聚苯乙烯)作成的圆棒,它的一端用同轴线或波导馈电。
图15所示的天线是用同轴线馈电的棒状介质天线。
图中1是介质棒;2是同轴线的内导体的延伸部分,形成一个振子,用以激发电磁波;3是同轴线;4是金属套筒。
套筒的作用除夹住介质棒外,更主要的是反射电磁波,从而保证由同轴线的内导体激励电磁波,并向介质棒的自由端传播。
介质天线的优点是体积小,方向性尖锐;缺点是介质有损耗,因而效率不高。
开槽天线在一块大的金属板上开一个或几个狭窄的槽,用同轴线或波导馈电,这样构成的天线叫做开槽天线,也称裂缝天线。
基于HFSS 的对称阵子天线仿真一、对称阵子天线概述 对称阵子天线是最基本也是最常用的天线形式。
对于中心点馈电的对称振子天线,其结构可看做是一段开路传输线张开而成。
馈电时,在对称振子两臂产生高频电流,此电流将产生辐射场。
可以将对称振子分成无数小段,每一小段都可以看成电基本振子,则对称振子辐射场就是这些无数小段电基本振子辐射场的总和。
由于结构简单,对称振子广泛应用于雷达、通信、电视和广播等无线电技术设备中。
对称振子的工作频率从短波波段到微波波段。
它既可作为独立的天线使用,也可以作为天线阵基本单元组成线阵或平面阵,还可以作为反射面天线的馈源。
二、天线参数对称阵子天线主要有输入阻抗,反射系数,回波损耗这几个重要参数。
图1为用MATLAB 仿真得出的半波对称阵子的E 面方向图。
输入阻抗in in in jX R Z +=,反射系数00Z Z Z Z in in +-=Γ,回波损耗Γ=lg 20RL 。
图1 理论E面方向图三、仿真过程对称阵子天线模型由几部分组成:两臂、馈电、辐射箱。
对称阵子的两臂为圆柱体,材料为理想导体,半径为变量r,臂长为变量l。
对称阵子一般通过同轴馈电,可以看作在振子的两臂之间施加了及总电压。
在用HFSS仿真时通过一个平面连接两臂,在平面上设置激励源来实现。
通过建立辐射箱,表面设置吸收边界条件来模拟无界空间。
依据这些要点建立了对阵振子天线模型,如图2。
图2 对称阵子天线模型四、结果分析图3为阻抗曲线图,深色为实部,浅色为虚部,模拟情况与理论值接近。
图4为端口2匹配时端口1的反射系数。
条件设定为r=1mm,l=25mm,即半波对称阵子。
比较图3和图4,可以得出在2.6GHz处反射系数最低,端口阻抗值约为50Ω,此为半波对称阵子天线的谐振频率。
图3 阻抗曲线图4 S11曲线图5为对称阵子天线的三维方向图,可以得出对称阵子的辐射场关于天线轴向对称。
图5 三维方向图图6是对称阵子的E面方向图,此方向图画出的是天线总增益的绝对值,与理论值接近。
汽车收音机天线的参数天线的参数短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。
短波通信传输信道具有变参特性,电离层易受环境阻碍,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。
短波通信系统的成效好坏,要紧取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。
近年来短波电台随着新技术提高进展专门快,实现了数字化、固态化、小型化,但天线技术的进展却较为滞后。
由于短波比超短波、卫星、微波的波长长,因此,短波天线体积较大。
在短波通信中,选用一个性能良好的天线关于改善通信成效极为重要。
下面简单介绍短波天线如何选型和几种常用的天线性能。
一、衡量天线性能因素天线是无线通信系统最差不多部件,决定了通信系统的特性。
不同的天线有不同的辐射类型、极性、增益以及阻抗。
1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。
2.极性:极性定义了天线最大辐射方向电气矢量的方向。
垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。
3.增益:天线的增益是天线的差不多属性,能够衡量天线的优劣。
增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度能够与参考天线进行比较,得出天线增益。
一样高增益天线的带宽较窄。
4.阻抗和驻波比(VSWR):天线系统的输入阻抗直截了当阻碍天线发射效率。
当驻波比(VSWR)1:1时没有反射波,电压反射比为1。
当VSWR大于1时,反射功率也随之增加。
发射天线给出的驻波比值是最大承诺值。
例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号缺失0.5dB。
VSWR为1.5:1时,缺失4%功率,信号降低0.18dB。
二、几种常用的短波天线1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情形下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有专门强的方向性。