对称振子天线_阵列天线
- 格式:ppt
- 大小:1.51 MB
- 文档页数:23
■开课目的“阵列天线分析与综合”是电子信息工程专业电磁场与微波通信方向的专业选修课程。
课程的任务是使学生掌握阵列天线的基本理论、基本分析与综合方法,掌握单脉冲阵列、相控阵扫描天线的基本理论和概念、以及阵列天线的优化设计思想,培养学生分析问题和解决问题的能力,为今后从事天线理论研究、工程设计和开发工作打下良好的基础。
■课程要求●约有五次作业●考核平时成绩占20%。
包括平时作业,出勤情况。
期末考试成绩占80%(一页纸开卷)雷达阵列天线简介1、“AN/SPY—1”S波段相控阵雷达是海军“宙斯盾”(Aegis)武器系统中的一部分,由RCA公司研制。
它有四个相控阵孔径,提供前方半空间很大的覆盖范围。
接收时它使用带68个子阵的馈电系统,每个子阵包含64个波导辐射器,总共有68×64=4352个单元。
发射时,子阵成对组合,形成32个子阵,每个子阵128个单元,总共32×128=4096辐射单元。
移相器为5位二进制铁氧体移相器,直接向波导辐射器馈电。
为了避免相位量化误差引起的高副瓣电平,后来移相器改为7位二进制移相器,合成的相控阵由强制馈电功分网络馈电,辐射单元也改为4350个,单脉冲的和、差波瓣及发射波束均按最佳化设计。
AN/SPY—1天线正在进行近场测试(RCA公司电子系统部提供)目前该系统安装在导弹巡洋舰上导弹巡洋舰上的AN/SPY—1系统2、爱国者(PATRIOT)多功能相控阵雷达是Raytheon公司为陆军研制的一种多功能相控阵雷达系统。
其天线系统使用光学馈电的透镜阵列形式。
和差波瓣分别通过单脉冲馈源达到最佳。
孔径呈圆形,包含大约5000个单元,采用4位二进制铁氧体移相器和波导型辐射器单元。
它安装在车辆上,并可平叠以便于运输。
爱国者多功能相控阵雷达天线(Raytheon公司提供)3、机载预警和控制系统(AW ACS)世界上第一个具有超低副瓣的作战雷达天线是由西屋电气公司为AWACS 系统研制的。
实验五对称振子天线的设计与仿真一、实验目的1.设计一个对称振子天线2.查看并分析该对称振子天线的反射系数及远场增益方向二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理1、电流分布对于从中心馈电的偶极子,其两端开路,故电流为零。
工程上通常将其电流分布近似为正弦分布。
假设天线沿z轴放置,其中心坐标位于坐标原点,如图所示,则长度为l的偶极子天线的电流分布为:I(z)=Imsink(l-|z|),其中Im是波腹电流,k波数。
对半波偶极子而言l=λ/4.则半波偶极子的电流分布,可以写成:I(z)=Imsin(π/2-kz)=Imcos(kz)。
首先明白一点:半波偶极子天线就是对称阵子天线。
2、辐射场和方向图已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。
式中,称为半波偶极子的方向性函数。
3、方向系数:对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。
一臂的导线半径为,长度为I。
两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=21。
对称振子的长度与波长相比拟,本身己可以构成实用天线。
在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布,忽略振子损耗。
根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。
在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z),长度为dz的电流元件串联而成。
利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。
四、实验内容利用HFSS软件设计一个近似理想导体平面的UHF 对称振子天线。
中心频率为0.55GHz,采用同轴线馈电,并考虑平衡馈电的巴伦结构。
最后得到反射系数和二维辐射远场仿真结果。
五、实验步骤.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry复选框选中。
一种具有防雷保护功能的对称振子天线设计文章在L频段设计了一个对称振子天线,通过矩量法对天线尺寸进行了推导计算,并设计了一种特殊的馈电方式,使其在满足电性能要求的同时具备了防雷保护的功能。
仿真结果表明,天线电性能与理论设计值相符,满足水平全向的使用要求。
标签:对称振子天线;防雷保护;矩量法1 概述对称振子作为一种历史悠久的经典天线[1],具有结构简单,易于实现等特点,在雷达信标、敌我识别等领域中有着广泛应用。
在实际使用中,为了利用对称振子水平全向辐射特性,往往将对称振子垂直安装于设备平台的最高处,对称振子本身是金属件,暴露在空间中,相当于一个自然的接闪器,容易受到雷击而损坏。
针对这个问题,有文献[2]建议在天线旁架设避雷针,不失为一种有效的办法,但在具体实现中存在一定问题,比如在狭小的安装平台上应该如何处理架设距离和高度,如果避雷针过于靠近,便构成天线的单元,无论是干涉和反射都会对天线的方向性造成一定影响;如果避雷针架设过远,则会影响避雷针的保护范围,天线仍有可能受到雷击而损坏。
还有文献[3]提出为天线设计了自保护功能,从结构上给雷电在天线振子和安装架之间提供一条短接释放路径,由于90%的雷电能量分布在直流和低频,一旦发生雷击,短接释放路径可让雷电流安全入地。
这种做法保护了天线,消除了架设避雷针的不利影响,也提高了天线设计难度,目前还没有适用于对称振子的防雷设计办法,本文将提出一种防雷保护功能结合电性能设计的办法,在保证主要电性能指标的同时,从物理结构上实现对天线的防雷保护功能。
2 设计考虑关于对称振子分析和设计方法较多,最常见是运用矩量法来推导振子长短和粗细对辐射特性的影响。
运用矩量法的推导结论,选取合适的天线振子尺寸,可以保证天线振子的辐射性能,许多文献都有详细的推导,这里不再详述。
而对称振子馈电设计是实现防雷保护功能的重点,本文设计时有以下三点考虑:第一,分离高低频能量的传输路径。
通常采用图1(a)所示的传统馈电方式是不能分离高低频能量的传输路径,雷电流仅有一条传输路径,即通过芯线进入天馈线,会对馈电点或天馈线开路处造成伤害,所以分离高低频能量的传输路径是必需的。
第6章1、简述天线的功能(概念+4个功能)在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或将无线电波转变为导波能量,原来辐射和接收无线电波的装装置称为天线。
①天线应能将导波能量尽可能多地转变为电磁波能量.这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配.②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性.③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化.④天线应有足够的工作频带.2、名词解释:什么是天线?①作用:在发射部分,将高频导行波转换为空间电波,在接收端,空间电波转换为导行波。
②性能:是能量转换器件、具有定向辐射能力、频率选择特性、极化特性。
③结构:开放。
3、把天线和发射机或接收机连接起来的系统为馈线系统,天线和馈线系统统称天线馈线系统,简称天馈系统。
4、点电基本振子近区场又为准静态场;离天线较远时,近似为0;电场磁场相位差90°,为感应场。
远区场中电基本振子的的远区场是沿着径向外传的横电磁波,远区场又称辐射场。
E/H=120pi,远区场具有与平面波相同的特性。
随着距离增加,辐射场减小。
4、电,磁基本振子具有相同的方向函数,空间相互正交,相位差90°5、天线的电参数有哪些?①主瓣宽度:主瓣宽度是衡量天线的最大辐射区域的尖锐程度的物理量。
在场强方向图中,等于最大场强两点间的宽度,称为半功率波瓣宽度;或将头两个零点之间的角度作为主瓣宽度,即零功率波瓣宽度。
②旁瓣电平: 旁瓣电平是指离主瓣最近且电平最高的第一旁瓣电平, 一般以分贝表示。
③前后比: 前后比是指最大辐射方向(前向)电平与其相反方向(后向)电平之比, 通常以分贝为单位。
④方向系数:方向系数定义为: 在离天线某一距离处, 天线在最大辐射方向上的辐射功率流密度Smax与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度S0之比,记为D, 即天线方向系数的一般表达式为6、要使天线方向系数大,不仅要求主瓣窄,还要全空间的旁瓣电平小。