某混凝土重力坝施工导流设计
- 格式:doc
- 大小:824.00 KB
- 文档页数:14
某混凝土重力坝施工导流工程设计方案设计方案目标:混凝土重力坝导流工程提供科学合理的设计方案,确保施工过程安全可行。
设计方案概述:根据工程需要,该导流工程设计方案包括以下几个方面:水力计算、导流结构选型、施工流程安排、安全预警措施等。
一、水力计算1.根据坝址附近的水文水资源和流域特征,采用多年平均流量和设计洪水流量作为设计依据进行水力计算。
2.确定导流坡度、导流时间和导流流量以及建立水力模型进行模拟计算,为导流结构选型提供数据支持。
二、导流结构选型1.针对具体工程情况,综合考虑导流流量、流速、流向等因素,选用可靠的导流结构,如导流孔、导流堰等。
2.根据水力计算结果和结构布置要求,进行导流结构参数的具体设计。
3.对导流结构进行受力分析,确保结构稳定可靠,并满足工程需要。
三、施工流程安排1.确定导流工程的施工时间和工期,并与大坝主体施工相衔接,确保施工进度和质量。
2.制定施工流程和施工安全技术措施,保障施工过程的安全和顺利进行。
四、安全预警措施1.建立合理的监测系统,对导流工程进行实时监测,确保施工过程中的安全。
2.设立安全预警指标,对可能的安全风险进行监控和预警,及时采取相应的措施,保障工程的安全。
设计方案实施:1.相关设计方案需要经过专家组审核,并与监理单位、施工单位进行沟通和协商。
2.实施过程中,需要严格按照设计方案和相关规范进行施工,保证工程的质量和安全。
3.实施过程中,应及时记录、整理并报告工程进展和安全状况,确保相关部门了解工程情况并能够迅速采取措施。
设计方案总结:通过水力计算、导流结构选型、施工流程安排和安全预警措施的合理设计,可以保证混凝土重力坝导流工程的安全可行性。
实施该设计方案时,需要确保方案的科学性、可操作性和可维护性,不断进行监测和调整,以确保工程的顺利进行和顺利竣工。
同时,需要与相关单位和专家进行紧密合作,共同推进工程落地,确保工程质量和安全。
网络教育学院本科生毕业论文(设计)题目:TL混凝土重力坝设计学习中心:奥鹏远程教育层次:专科起点本科专业:水利水电工程容摘要重力坝是一种古老而迄今应用很广的坝型,因主要依靠自重维持稳定而得名。
重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石。
在中国的坝工建设中,混凝土重力坝也占有较大的比重。
本次设计为TL混凝土重力坝设计,设计的准备工作主要包括基本资料的分析、坝型选择和枢纽布置。
设计的主要容首先是进行坝体的设计,进行坝型选择,设计采用混凝土重力坝方案,设计容包括挡水坝段的设计,溢流坝段的设计,底孔坝段的设计等。
然后是细节构造与坝基处理,有坝基清理、坝基加固、坝基防渗及坝基排水设计、断层处理等。
关键词:水利工程;混凝土重力坝;剖面设计;荷载计算;应力分析目录引言11 设计资料31.1 某重力坝基本资料31.1.1 流域概况31.1.2 地形地质31.1.3 建筑材料31.1.4 水文条件31.1.5 气象条件41.2 某重力坝工程综合说明42 坝型及坝址选择72.1 坝型选择72.2 坝址选择83 挡水建筑物设计93.1 非溢流坝剖面设计93.1.1 坝顶高程的拟定93.1.2 坝顶宽度的拟定113.1.3 坝坡的拟定113.1.4 上、下游起坡点位置的确定113.2 荷载计算及组合123.2.1 自重W133.2.2 静水压力133.2.3 扬压力133.2.4 泥沙压力143.2.5 浪压力153.2.6 荷载组合163.2.7.荷载计算成果173.3 抗滑稳定分析213.4 应力分析224 坝体细部构造234.1 坝顶构造234.2 廊道系统234.2.1 基础廊道234.2.2 坝体检查排水廊道244.3 坝体分缝244.4 坝体止水254.5 坝体排水265 地基处理275.1 地基开挖与清理275.2 坝基的帷幕灌浆275.3 坝基排水275.4 坝基的固结灌浆28结论29参考文献30引言重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石,整体是由若干坝段组成。
第一章施工水流控制四、计算题1.大坝施工,用全段围堰、隧洞导流。
图示围堰为Ⅲ级。
设计导流流量为160m3/s,下游水位为129。
25m。
有隧洞泄流与水力关系查得,160 m3/s泄流量时上游水位为136.65m,此水位的波浪爬高为0。
56m.下游波浪爬高0.15m,求上下游围堰的堰顶高程。
[解]:因采用波浪爬高,同时又是上下游围堰,所以考虑应是土石围堰;查表得:Ⅲ级土石围堰的安全超高为0。
7m。
上游围堰堰顶高程:HU=136.65+0。
56+0.7=137.91m下游围堰堰顶高程:HL=129。
25+0。
15+0。
7=130.10m2.混凝土重力坝施工,初期导流采用分段围堰法,第一期先围右岸河床,左岸河床泄流。
设计洪水流量为13600 m3/s,,相应的过水深度为50m,过水断面平均宽度为180m,行进流速为0。
18m/s,验算河床束窄后的流速能否满足通航要求。
围堰属Ⅲ级,求纵向围堰近首、末段的高度.上、下游波浪高度分别为1.0m,0.6m。
[解]:平均流速v=13600/(180×50)=1。
51<2m/s 满足通航要求。
Ⅲ级混凝土围堰的安全超高为0。
4m。
流速系数取0。
80。
进口处水位落差为1.512/(2g×0。
80^2)-0。
18^2/2g=0。
18m纵向围堰首端高度:5.0+0.18+0.4+1.0=51.58m纵向围堰末段高度:50+0。
4+0.6=51m3.截流时抛掷10t重的混凝土四面体。
在立堵与平堵时,各能抵抗多大的水流流速。
[解]:混凝土的容重取2。
4t/m3。
四面体的体积V为:10/2.4=4。
17m3设化引球体半径为r,则 4。
17=4лr3/3r=0.9985m球体直径D=1。
997m立堵时,取K=1。
05,=7。
78m/s平堵时,取K1=0。
9, =6。
67m/s取K2=1.2, =8.89m/s4.大坝施工的导流隧洞为3。
5×3.5的城门洞形断面,封堵时隧洞断面重心上水头为45m。
试论混凝土重力坝施工导流设计作者:刘中宽来源:《城市建设理论研究》2013年第11期摘要:混凝土重力坝尤其是碾压混凝土坝中,混凝土为成层结构,因而层面特性对混凝土坝的安全至关重要,个别坝段水平薄弱面的存在对混凝土坝的整体安全性有重要影响。
因此为了使水工建筑物能保持在干地上施工,用围堰来维护基坑,并将水流引向预定的泄水建筑物具有重要的工程意义。
关键词:中图分类号:TU37 文献标识码:A 文章编号:由于混凝土重力坝具有碾压仓面大、施工强度高、高温多雨季节连续施工等特点,以及受施工组织措施、设备能力、气候条件等因素的影响,个别坝段的水平层面存在形成局部范围薄弱面的可能。
而这些薄弱面的存在,不可避免地会对坝体产生不利影响,因此进行引流对其具有重要的工程意义。
国内某典型重力坝计划分两期开发,初期正常蓄水位375m,最大坝高192 m,厂房装机7台,总装机容量420万KW。
后期大坝加高,提高正常蓄水位至400m,最大坝高达216.5 m,厂房增加装机2台,使总装机容量达540万KW。
1 导流标准的选择水利行业执行的标准SL319—2005《混凝土重力坝设计规范》规定,混凝土围堰的导流设计洪水标准为5-10年一遇,相应设计流量为13500m3/s~ 11100m3/s。
在选择导流设计标准时,充分考虑了以下因数:工程下游有城镇,人口密集,具有一定经济规模;坝址处于暴雨中心附近,降雨强度大,洪水暴涨暴落、峰高量大,破坏力大。
工程上游河段有已建梯级水电站;导流隧洞下游段位于软岩段,一旦遇险,抢险的难度很大;根据规范精神应取上限值。
导流标准采用值:初期导流上、下游RCC围堰和导流隧洞按IV级临时建筑物设计,设计洪水标准为频率10%、全年洪水13500m3/s。
工程水电站在2005年和2006年的6~7月预留5.5亿m3防洪库容,可降低水电站导流隧洞和上、下游围堰的规模,调蓄后可将频率10%、全年洪水13500m3/s降低为10930m3/s。
XXXXXX继续教育学院毕业论文题目 XXX水库混凝土重力坝枢纽设计专业水工层次专升本姓名学号前言关键词:重力坝剖面稳定应力细部构造地基处理本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。
整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。
其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。
详见1号图SG-02下游立视图。
挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。
坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。
溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。
本枢纽溢流堰采用挑流方式消能,挑角取250。
止水采用两道紫铜中间加沥青井的形式。
坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。
以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。
本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。
编者2008.9目录第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料 (2)一、枢纽概况及工程目的 (2)二、设计基本资料(参见附录一)………………………………………………………………………2附录一 (3)附录二水市库规划及建筑特性指标 (12)第二章坝轴线、坝型选择和枢纽布置方案比较.............................................14第一节、坝轴线选择 (14)第二节、坝型选择 (17)第三节、枢纽布置方案 (20)第三章坝工设计 (26)第一节、挡水坝剖面设计 (26)第二节、挡水坝剖面设计 (28)第三节、溢流坝剖面拟定 (33)第四节、挡水坝稳定计算 (43)第四章细部构造设计 (56)第一节、坝顶构造 (56)第二节、分缝止水 (56)第三节、混凝土标号分区 (58)第四节、排水 (60)第五节、廊道系统 (61)第五章地基处理 (63)第一节、清基开挖 (63)第二节、防渗措施 (64)第三节、断层破碎带的处理 (66)第四节、软弱夹层处理 (67)第二部分计算书表 1 设计水位作用情况设计值计算表 (69)表2 荷载计算表(设计水位情况) (70)表3校核水位作用情况设计值计算表 (71)表4 荷载计算表(校核洪水位情况) (72)第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料一、枢纽概况及工程目的:潘家口水库位于河北省唐山市和承德市两地区交界处,坝址位于迁西县洒河桥上游十公里扬查子村的栾河干流上。
碾压混凝土重力坝大坝施工方案目录一、前言 (2)1.1 编制目的 (2)1.2 编制依据 (3)1.3 工程概况 (4)二、施工条件分析 (5)2.1 自然环境条件 (6)2.2 交通运输情况 (7)2.3 施工用电、用水及通讯情况 (8)2.4 施工材料供应 (9)三、施工总体部署 (10)3.1 施工原则与目标 (11)3.2 施工组织机构设置 (12)3.3 施工流程安排 (13)3.4 施工现场平面布置 (15)四、主要施工方法 (16)4.1 基础处理与防渗措施 (17)4.2 混凝土浇筑方案 (19)4.3 坝体填筑施工 (21)4.4 坝体接缝处理 (22)4.5 渠道及厂房系统施工 (24)五、施工期度汛方案 (25)5.1 防洪标准与措施 (26)5.2 洪水调度与应急响应 (27)5.3 坝体临时度汛措施 (29)六、施工安全与质量保证措施 (30)6.1 安全生产责任制落实 (31)6.2 安全教育培训与考核 (32)6.3 安全检查与隐患排查 (33)6.4 质量管理体系建立与运行 (34)6.5 施工过程质量控制 (35)七、施工进度计划与资源配置 (36)7.1 施工进度计划制定 (38)7.2 施工人员及设备资源配置 (38)7.3 施工材料供应计划 (40)八、环境保护与文明施工 (41)8.1 环境保护措施 (43)8.2 文明施工管理要求 (44)一、前言随着水利工程建设的不断发展和大型化、复杂化趋势的日益明显,碾压混凝土重力坝作为一种具有高径向尺寸、高堆石体高度和良好抗震性能的新型混凝土坝型,已经在全球范围内得到了广泛的应用。
特别是在应对极端气候条件、实现大流量泄洪、促进地方经济发展等方面,碾压混凝土重力坝展现出了显著的优势。
随着工程建设规模的不断扩大和技术水平的不断提高,碾压混凝土重力坝的建设管理、施工技术等方面也面临着诸多挑战。
为了更好地推动碾压混凝土重力坝的建设和发展,本文将从施工方案的角度出发,系统阐述碾压混凝土重力坝大坝施工的关键技术和管理要求,以期为行业内的专业人士提供有益的参考和借鉴。
混凝土重力坝施工导流施工组织设计方案一、施工组织设计概述混凝土重力坝导流施工的关键在于如何保证施工质量和安全。
为了保证施工过程的顺利进行和工程质量的保证,必须精心组织,并按照正确的顺序进行施工。
二、施工过程及工序分析1. 坝基开挖坝基开挖应分年进行。
首先进行A级开挖,开挖边坡应严格按照设计要求设置,并采取套筒打钢板支护的方式进行。
开挖时要进行测量、控制,避免对周围建筑物、道路等造成影响。
2. 坝基清洁坝基清洁应在地基层次开挖后进行,清理坑内的杂物及浮土。
并在清洁后立即喷涂一层防水层。
3. 坝基变形测量在清洁过程完成后,应立即进行变形测量。
并及时记录,为后续施工提供依据。
4. 坝基处理经过清洁和变形测量后,应根据坝体变形的情况进行坝基处理,如调整坝体、进行加固等。
保证坝基稳定后方可继续施工。
5. 坝基防水处理在进行坝基处理后,应及时进行坝基防水处理。
采用弹性水泥砂浆涂抹,使其达到防水的要求。
6. 坝基灌浆进行防水处理后,应进行坝基灌浆。
采用泵送的方式进行,灌浆深度应按照设计要求进行。
7. 坝基(底板)钢筋和模板安装经过灌浆后,应进行钢筋和模板的安装。
钢筋应按照设计布置,模板应按照设计要求进行安装。
8. 砼浇筑经过前面的处理和安装后,应及时进行混凝土砼浇筑。
进行浇筑前应进行组织砼强度试验,确保砼强度符合设计要求。
9. 二次灌浆经过砼浇筑后,应进行二次灌浆。
对于需要进行修补或加强的地方,应进行单独的灌浆加固。
三、施工安全措施1. 施工前,应对施工现场进行整理和平整,保证施工面的平整度和坚实度。
2. 严格执行施工管理制度,实行责任制和考核制度,加强对员工的安全教育和培训。
3. 在坝体内部和外部设置安全防护网,保证施工人员的安全和坝体的质量。
4. 采取有效的安全防护措施,防止墙体倒塌、事故发生。
5. 要做好防火、防爆措施,避免火灾事故发生。
6. 严格执行动火作业管理制度,加强对施工现场的监管和控制。
四、施工进度控制1. 根据设计要求和实际情况,制定合理的施工进度计划,合理安排施工人员和设备的使用。
某混凝土重力坝施工导流设计一、工程概况二、基本资料1.工程水文资料该水库库容在1×108米3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3千米处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得.现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表53332.坝址地形地质条件(1)左岸:地形自然坡度为1:1.5~2.0,覆盖层2~3米,全风化带厚3~5米,强风化加弱风化带厚5米,微风化厚4米(2)河床:岩面较平整.冲积沙砾层厚约0~1.5米,弱风化层厚1米左右,微风化层厚3~6米.河床纵剖面地形中,迎水面坝踵处岩面高程约在86米左右,背水面坝趾处岩面高程约在83.5米左右.距坝趾下游15米处有一深潭.高程约81米,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强(3)左岸:地形自然坡度为1:2左右,覆盖层4~6米,全风化带厚6~8米,强风化带厚2~4米,弱风化带厚2~4米,微风化厚1~12米(4)坝基开挖:强风化层要全部挖除.坝基的开挖范围应与建筑物的底部轮廓尺寸相适应,开挖的深度按坝底应力和坝基强度而定(5)坝后式厂房基础:厂房设于坝后靠右岸的河床处,设计最低开挖高程为79~83米之间,全部处于微风化新鲜基岩内3.主要施工条件(1)对外交通:目前已有两条三级公路分别从两岸经过坝首和坝区(2)施工电源:目前已有35KV输电线路有县城架至G镇,距坝址仅3千米,施工用电可利用本县电网中的水电,电源充足,质量可靠(3)主要建筑材料:本枢纽主坝为砼重力坝,坝体砼所需的卵石,在坝址上下游1~2千米均可开采,河砂在距坝址10千米处的下游采集.库内盛产竹木,自给有余.仅水泥、钢筋、机电设备等需要外购5.施工年限本工程主体部分的大坝和电站厂房,施工工期为两年左右,准备工程在第一施工年度的4~7月份完成,水库在第三施工年度的汛后开始蓄水,并在10月1日并网发电三、施工导流设计过程(一)施工导流设计标准选择 1.施工导流建筑物级别的 选定 本工程根据《水利水电工程施工组织设计规范》(SDJ338—89),以及本工程的 级别和围堰工程规模,选定施工导流建筑物为Ⅳ级2.施工导流设计洪水标准的 选择根据《水利水电工程施工组织设计规范》(SDJ338—89),以及导流建筑物的 级别,选定导流建筑物的 洪水标准为:20年一遇(P=5%)(二)施工导流时段选择根据本工程的 特征条件采用分段围堰法导流,中后期用临时底孔泄流来修建混凝土坝.划分为三个时段:第一时段,河水由束窄河床通过,进行第一期基坑内施工;第二时段,河水由导流底孔下泄,进行第二期基坑内施工;第三时段,坝体全面升高,可先由导流底孔下泄河水,底孔封堵以后,则河水由永久泄水建筑物下泄,也可部分或完全拦蓄在水库中,直到工程完建(三)施工导流设计流量及坝址处河床水位的 选择根据导流设计洪水标准和围堰施工分期,选定施工导流设计流量为Q =235 米3/s.根据坝址水位—流量关系曲线,采用内插法得到Q =235 米3/s 时的 水位为86.09米,由于观测点距坝址有300米远,考虑到坡降,选择坝址处水位为86.39米(四)施工导流方案 的 选择根据枢纽的 自然条件及坝体的 结构特点及工程的 导流施工标准,选择采用分段围堰法施工,分为两段两期.第一期先围左岸,包括左岸非溢流坝段和溢流坝段,进行一期基坑内施工;第二期围河床右岸部分,包括右非溢流坝段(含厂房坝段),进行二期基坑内施工.本工程所在地,河流流量小 ,河床滩地宽,两岸坡度 缓,采用两段两期的 施工导流方式完全可以满足要求(五)第一期导流设计1.河床水面宽度 及束窄度河床水面宽度 由图2所示确定为64米,束窄度 取K=60%图2 单位(米)2.水利计算束窄度 取K=60%,抗冲流速s m v /4= (1)一期束窄段河床过流能力设计 则过水断面面积:2423575.58m w v Q===(2)过水断面为梯形:假设边坡为1:1, 4=i ,03.0=n ,出口处渠底高程83.5米假定水深为2.5米则:275.675.2)5.216.24()(m h mh b w =⨯⨯+=+= m m h b x 67.31115.226.241222=+⨯⨯+=++=m R x w 14.267.3175.67=== s m R c n /84.3714.221616103.011=⨯==s m Ri wc Q /2.237414.284.3775.673=⨯⨯⨯==假定水深为2.48米时,s m Q /2353= 束窄段河床平均流速:s m s m v A A Q c /4/65.375.6795.0235)(21<===⨯+ε(3)束窄河床段上游水位壅高:m Z g v g v c 81.081.92)(81.9285.065.322296.1472352202=-=-=⨯⨯⨯ϕ(4)上、下游一期横向围堰堰顶高程:m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 54.8775.081.098.85=++=++=δ上3.纵向围堰长度 的 拟定及围堰轴线布置根据施工要求及场地条件,拟定纵向围堰长度 为150米.纵向围堰轴线位置在河床中部偏右岸约29米处,如图24.围堰断面设计(1)纵向围堰断面构造及尺寸图3 单位:米米围堰主体采用块石、砂砾土料堆石体,防渗层为粘土斜墙,在粘土斜墙迎水位采用浆砌石护面(2)上、下游横向围堰断面尺寸 ①上游横向围堰断面构造及尺寸图4 单位:米米堆石体采用块石、砂砾土石料堆砌,防渗层为粘土斜墙,防冲采用浆砌石护面 ②下游横向围堰断面构造及尺寸图5 单位:米米5.围堰工程量的 估算 上游横向围堰长度 :36米32125.1370365.3)75.183(m V =⨯⨯+⨯=上下游横向围堰长度 :68米3211989683)5.613(m V =⨯⨯+⨯=下纵向围堰方量:长150米32152501505.3)173(m V =⨯⨯+⨯=纵325.86095250198925.1370m V =++=一期(六)第二期导流水力计算本工程二期采用底孔导流,为了 确保泄流能力,拟定采用2个底孔 1.底孔的 布置及断面尺寸的 选择根据水利水电工程设计规范选定:底孔布置在主河床的 溢流坝段中,底孔底板距基岩面的 距离为2米.底孔进口高程选定84.0米,出口高程83.9米,底孔全长57米由水利学原理,判定底孔出流为有压自由出流.其泄流能力计算公式为:)(2p h T g w Q -=μ,式中D h p 85.0=,(D 为引化直径).底孔进水口水头损失系数为1.0=进ξ,闸门槽水头损失1.0=槽ξ,沿程水头损失)/L ()c /8g (2D ⨯=沿ξ.s m Q /2353=时,出口处下游水位高程为86.39米,糙率取014.0=n则底孔泄流量曲线如图6(两个底孔)图6 底孔泄流能力曲线图考虑到施工强度 及防洪要求,选定采用两个3×4.5的 导流底孔.这样既可以满足施工期间导流的 要求,又适当减小 混凝土的 浇筑强度2.二期导流水力计算 (1)上游水位壅高值m D H Z fc fc 99.5995.35.1=⨯===τ(2)上下游堰顶高程m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 70.9275.099.598.85=++=++=δ上3.二期纵向围堰的 上、下纵段长度 及围堰的 轴线平面布置根据施工布置要求,定出纵向围堰上纵段长54米.纵向围堰下纵段主要靠一期工程时在溢流坝段右边导墙来承担,右导墙长38米,再在右导墙上接24米的土石围堰纵向围堰上纵段轴线布置在一期纵向围堰轴线左边14米处,纵向围堰下纵段轴线布置与右导墙轴线重合4.围堰断面的结构及尺寸(1)纵向围堰上纵段剖面图7 单位(米米)结构材料与一期一致(2)纵向围堰下纵段剖面图8 单位(米米)结构材料与一期一致(3)上游横向围堰剖面图9 单位(米米)二期上游横向围堰采用钢筋石笼护面,粘土斜墙铺盖防渗,围堰长62米(4)下游横向围堰剖面图10 单位(米米)二期下游横向围堰结构材料与一期下游围堰相同,围堰长28米 5.围堰工程量计算 纵向围堰上纵段:3212.9331540.9)4.353(m V =⨯⨯+⨯=上纵纵向围堰上纵段:3212.781245.3)6.153(m V =⨯⨯+⨯=下纵上游横向围堰:3215.12973620.9)5.433(m V =⨯⨯+⨯=上横下游横向围堰:3217.1065285.3)57.183(m V =⨯⨯+⨯=下横二期围堰总方量:36.241517.10655.129732.7812.9331m V =+++=二期四、截流设计1.截流时间的 选择根据表3的 水文资料及工程施工条件的 要求,选定截流时间在第二施工年度 的 9月初.此时河流水量逐渐变小 ,进入枯水期2.截流流量的 确定根据表3的 水文资料,选取9月份的 流量作多年经验频率曲线流(频率(%)图11 截流流量经验频率曲线图从频率曲线上看出,曲线与大 部分经验点配合较好,所以不用再进矩法配线计算.从曲线上查得P=10%时,1.15 p Q 米3/S,即为截流设计流量3.截流过程设计本工程一期施工截流可不做考虑,从一期围堰的 平面布置图上可知,上游横向围堰工程量较小 ,且紧靠左岸的 滩地,枯水期滩地处基本无水,纵向围堰在滩地上顺水流方向填筑,而下游横向围堰可在静水中填筑.二期施工截流时,戗堤轴线选在一期上游横向围堰与纵向围堰相交的 背水面坡脚处,龙口段设在主河槽偏右侧.该处河床基岩出露,抗冲能力强,截留施工采用立堵法进行河床右岸有一条三级公路,所以截流时从河床右岸向龙口进占,逐步束窄龙口,直至龙口合龙、闭气.然后再进行加固,填筑二期上游横向围堰,最后填筑二期下游横向围堰五、施工渡汛为了 确保工程能够如期完成,并保证工程在施工期间能安全渡汛,须进行施工调洪计算.求出一、二期坝体施工时渡汛高程,以便在施工中对坝体工程和施工进度 及施工强度 实行严格控制1.坝体施工期临时渡汛洪水标准 根据《水利水电工程施工组织设计规范》(SDJ338—89)规定,选择渡汛洪水标准为20年一遇,即P=5%2.施工调洪计算调洪计算方法采用单辅助线图解法,设计洪水过程线的 频率P=5%,h t 6=∆,起调水位为导流设计流量235=Q 米3/S 时的 水位.从表1中选出P=5%,h t 6=∆,作设计洪水过程线图流(图12 设计洪水位过程线(P=5%)(1)第一期施工渡汛,能满足全年施工洪水996=Q 米3/S 的 通过要求,第一期施工可不作调洪计算(2)第二期工程施工渡汛,查下游水位流量关系曲线,当9.1699=Q 米3/S 时,下游水位为89.93米.经流态校核,此流量上,底孔泄流量按有压淹没出流计算图13 下游水位与流量关系曲线图六、导流底孔封堵1.底孔封堵施工方案本工程采用下闸封孔,浇筑混凝土封堵的方式进行底孔封堵.当大坝整体高程施工达到 124米以上并能由溢流坝段泄水时,且厂房进水口闸门已安装完毕后,可进行下闸.通过对制造成本、制作工艺、启闭机械能力等方面的考虑后,决定采用钢筋混凝土整体闸门作为封孔闸门.采用电动卷扬机沉放.临时底孔是坝体的一部分,封堵时要全孔封堵,浇筑混凝土.为了确保封堵混凝土与洞壁之间有足够的抗剪力,采用键槽结合2.封堵时间及蓄水计划(1)封堵时间导流底孔的封堵时间安排在枯水期.根据本工程的施工进度要求在第三施工年度汛期后开始蓄水,并在10月1日并网发电.所以本工程的封堵时间选在第三施工年度的8月份(2)蓄水计划①蓄水历时计算,按表3给出的多年各月来水量在保证率为85%时,将这些水量依次累计,对照水库容积曲线与水位线关系图及满足发电要求,可确定临时泄水建筑物的封堵时间,绘出图14中的曲线1②校核库水位上升过程中大坝施工的安全渡汛及据此拟定大坝施工进度.大坝施工渡汛校核洪水标准选用20年一遇(P=5%)的月平均流量;核算时以导流临时建筑物封堵日期为起点,用顺推法绘制水库蓄水曲线2③大坝全线浇筑高程过程线,如图14中的曲线3(应包络曲线2)图14 水库蓄水高程与历时曲线图1—水库蓄水高程与历时关系曲线;2—导流泄水建筑物封堵后坝体渡汛、水库蓄水高程与历时关系曲线;3—坝体浇筑进度曲线.word文档word文档。
某混凝土重力坝施工导流设计一、工程概况本水库是该流域水利水电建设规划中的主体工程之一。
坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量×108m3。
本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。
工程总库容为×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达×108m3,为年调节性水库。
该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。
电站装机容量为2×3200KW。
引水压力钢管设在非溢流坝段内,进水口底板高程为95.0m,管径1.75m,采用单机供水的布置方式。
水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。
工程枢纽处地形及工程布置见图1。
二、基本资料1.工程水文资料该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。
现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。
33表3 水文站实测历年月平均流量单位:m3/s2.坝址地形地质条件(1)左岸:地形自然坡度为1:~,覆盖层2~3m,全风化带厚3~5m,强风化加弱风化带厚5m,微风化厚4m。
(2)河床:岩面较平整。
冲积沙砾层厚约0~1.5m,弱风化层厚1m左右,微风化层厚3~6m。
河床纵剖面地形中,迎水面坝踵处岩面高程约在86m左右,背水面坝趾处岩面高程约在83.5m 左右。
距坝趾下游15m处有一深潭。
高程约81m,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强。
(3)左岸:地形自然坡度为1:2左右,覆盖层4~6m,全风化带厚6~8m,强风化带厚2~4m,弱风化带厚2~4m,微风化厚1~12m。
(4)坝基开挖:强风化层要全部挖除。
坝基的开挖范围应与建筑物的底部轮廓尺寸相适应,开挖的深度按坝底应力和坝基强度而定。
(5)坝后式厂房基础:厂房设于坝后靠右岸的河床处,设计最低开挖高程为79~83m之间,全部处于微风化新鲜基岩内。
3.主要施工条件(1)对外交通:目前已有两条三级公路分别从两岸经过坝首和坝区。
(2)施工电源:目前已有35KV输电线路有县城架至G镇,距坝址仅3km,施工用电可利用本县电网中的水电,电源充足,质量可靠。
(3)主要建筑材料:本枢纽主坝为砼重力坝,坝体砼所需的卵石,在坝址上下游1~2km均可开采,河砂在距坝址10km处的下游采集。
库内盛产竹木,自给有余。
仅水泥、钢筋、机电设备等需要外购。
5.施工年限本工程主体部分的大坝和电站厂房,施工工期为两年左右,准备工程在第一施工年度的4~7月份完成,水库在第三施工年度的汛后开始蓄水,并在10月1日并网发电。
三、施工导流设计过程(一)施工导流设计标准选择1.施工导流建筑物级别的选定本工程根据《水利水电工程施工组织设计规范》(SDJ338—89),以及本工程的级别和围堰工程规模,选定施工导流建筑物为Ⅳ级。
2.施工导流设计洪水标准的选择根据《水利水电工程施工组织设计规范》(SDJ338—89),以及导流建筑物的级别,选定导流建筑物的洪水标准为:20年一遇(P=5%)。
(二)施工导流时段选择根据本工程的特征条件采用分段围堰法导流,中后期用临时底孔泄流来修建混凝土坝。
划分为三个时段:第一时段,河水由束窄河床通过,进行第一期基坑内施工;第二时段,河水由导流底孔下泄,进行第二期基坑内施工;第三时段,坝体全面升高,可先由导流底孔下泄河水,底孔封堵以后,则河水由永久泄水建筑物下泄,也可部分或完全拦蓄在水库中,直到工程完建。
(三)施工导流设计流量及坝址处河床水位的选择根据导流设计洪水标准和围堰施工分期,选定施工导流设计流量为Q=235 m3/s。
根据坝址水位—流量关系曲线,采用内插法得到Q=235 m3/s时的水位为86.09m,由于观测点距坝址有300m远,考虑到坡降,选择坝址处水位为86.39m。
(四)施工导流方案的选择根据枢纽的自然条件及坝体的结构特点及工程的导流施工标准,选择采用分段围堰法施工,分为两段两期。
第一期先围左岸,包括左岸非溢流坝段和溢流坝段,进行一期基坑内施工;第二期围河床右岸部分,包括右非溢流坝段(含厂房坝段),进行二期基坑内施工。
本工程所在地,河流流量小,河床滩地宽,两岸坡度缓,采用两段两期的施工导流方式完全可以满足要求。
(五)第一期导流设计1.河床水面宽度及束窄度河床水面宽度由图2所示确定为64m,束窄度取K=60%。
图2 单位(m ) 2.水利计算束窄度取K=60%,抗冲流速s m v /4=。
(1)一期束窄段河床过流能力设计 则过水断面面积:2423575.58m w v Q===(2)过水断面为梯形:假设边坡为1:1,οοο4=i ,03.0=n ,出口处渠底高程83.5m 。
假定水深为2.5m则:275.675.2)5.216.24()(m h mh b w =⨯⨯+=+= m m h b x 67.31115.226.241222=+⨯⨯+=++=m R x w14.267.3175.67=== s m R c n /84.3714.221616103.011=⨯==s m Ri wc Q /2.237414.284.3775.673=⨯⨯⨯==οοο假定水深为2.48m 时,s m Q /2353=。
束窄段河床平均流速:s m s m v A A Q c /4/65.375.6795.0235)(21<===⨯+ε(3)束窄河床段上游水位壅高:m Z g v g v c 81.081.92)(81.9285.065.322296.1472352202=-=-=⨯⨯⨯ϕ(4)上、下游一期横向围堰堰顶高程:m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 54.8775.081.098.85=++=++=δ上3.纵向围堰长度的拟定及围堰轴线布置 根据施工要求及场地条件,拟定纵向围堰长度为150m 。
纵向围堰轴线位置在河床中部偏右岸约29m 处,如图2。
4.围堰断面设计(1)纵向围堰断面构造及尺寸图3 单位:mm围堰主体采用块石、砂砾土料堆石体,防渗层为粘土斜墙,在粘土斜墙迎水位采用浆砌石护面。
(2)上、下游横向围堰断面尺寸 ①上游横向围堰断面构造及尺寸图4 单位:mm堆石体采用块石、砂砾土石料堆砌,防渗层为粘土斜墙,防冲采用浆砌石护面。
②下游横向围堰断面构造及尺寸图5 单位:mm 5.围堰工程量的估算上游横向围堰长度:36m32125.1370365.3)75.183(m V =⨯⨯+⨯=上下游横向围堰长度:68m3211989683)5.613(m V =⨯⨯+⨯=下纵向围堰方量:长150m32152501505.3)173(m V =⨯⨯+⨯=纵325.86095250198925.1370m V =++=一期(六)第二期导流水力计算本工程二期采用底孔导流,为了确保泄流能力,拟定采用2个底孔。
1.底孔的布置及断面尺寸的选择根据水利水电工程设计规范选定:底孔布置在主河床的溢流坝段中,底孔底板距基岩面的距离为2m 。
底孔进口高程选定84.0m ,出口高程83.9m ,底孔全长57m 。
由水利学原理,判定底孔出流为有压自由出流。
其泄流能力计算公式为:)(2p h T g w Q -=μ,式中D h p 85.0=,(D 为引化直径)。
底孔进水口水头损失系数为1.0=进ξ,闸门槽水头损失1.0=槽ξ,沿程水头损失)/L ()c /8g (2D ⨯=沿ξ。
s m Q /2353=时,出口处下游水位高程为86.39m ,糙率取014.0=n 。
则底孔泄流量曲线如图6(两个底孔)。
图6 底孔泄流能力曲线图考虑到施工强度及防洪要求,选定采用两个3×的导流底孔。
这样既可以满足施工期间导流的要求,又适当减小混凝土的浇筑强度。
2.二期导流水力计算 (1)上游水位壅高值m D H Z fc fc 99.5995.35.1=⨯===τ (2)上下游堰顶高程m d H H z 68.8670.048.25.83=++=++=δ下 m z H H z 70.9275.099.598.85=++=++=δ上3.二期纵向围堰的上、下纵段长度及围堰的轴线平面布置根据施工布置要求,定出纵向围堰上纵段长54m 。
纵向围堰下纵段主要靠一期工程时在溢流坝段右边导墙来承担,右导墙长38m ,再在右导墙上接24m 的土石围堰。
纵向围堰上纵段轴线布置在一期纵向围堰轴线左边14m 处,纵向围堰下纵段轴线布置与右导墙轴线重合。
4.围堰断面的结构及尺寸 (1)纵向围堰上纵段剖面图7 单位(mm)结构材料与一期一致。
(2)纵向围堰下纵段剖面图8 单位(mm)结构材料与一期一致。
(3)上游横向围堰剖面图9 单位(mm)二期上游横向围堰采用钢筋石笼护面,粘土斜墙铺盖防渗,围堰长62m。
(4)下游横向围堰剖面图10 单位(mm )二期下游横向围堰结构材料与一期下游围堰相同,围堰长28m 。
5.围堰工程量计算 纵向围堰上纵段:3212.9331540.9)4.353(m V =⨯⨯+⨯=上纵纵向围堰上纵段:3212.781245.3)6.153(m V =⨯⨯+⨯=下纵上游横向围堰:3215.12973620.9)5.433(m V =⨯⨯+⨯=上横下游横向围堰:3217.1065285.3)57.183(m V =⨯⨯+⨯=下横二期围堰总方量:36.241517.10655.129732.7812.9331m V =+++=二期四、截流设计 1.截流时间的选择根据表3的水文资料及工程施工条件的要求,选定截流时间在第二施工年度的9月初。
此时河流水量逐渐变小,进入枯水期。
2.截流流量的确定根据表3的水文资料,选取9月份的流量作多年经验频率曲线。
流(频率(%)图11 截流流量经验频率曲线图从频率曲线上看出,曲线与大部分经验点配合较好,所以不用再进矩法配线计算。