电阻
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
电阻定义: 电子在导体中流动所受到的阻力.这种阻力一般有两种:一,所用导体的材料本身。
所谓金无足赤,人无完人。
材料本身具有一定的不导电杂质,另外,材料的几何尺寸也会形成电阻,几何尺寸太小,超量的电子流动必然在导体中发生拥挤,碰撞而形成阻力;二,环境温度高低也会影响导体内的分子结构发生变化,从而使得导体的电阻发生改变(正温度现象,负温度现象,超导现象)。
符号:用R表示单位:欧姆,简称欧,符号是Ω,还有千欧(kΩ)、兆欧(MΩ)换算关系:1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω影响因素:1.材料p(如铜和铝相比,电阻大小不同)2.长度L (在材料,横截面积,温度等一定的情况下,长度越长,电阻越大)3.横截面积S (在材料,长度温度等一定的情况下,横截面积越大,电阻越小)4.温度T (通常电阻随温度的升高而增大)计算公式:(1) 串联:R=R1+R2+...+Rn(2) 并联:1/R=1/R1+1/R2+...+1/Rn两个电阻并联式也可表示为R=R1·R2/(R1+R2)决定式:R=ρL/S物理特征:超导现象:定义:超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度特性(1)零电阻效应:回路没有电阻,自然就没有电能的损耗。
一旦在回路中激励起电流,不需要任何电源向回路补充能量,电流可以持续地存在下去,这一特性成为超导体的零电阻效应(2)抗磁性:在磁场中一个超导体只要处于超导态,则它内部产生的磁化强度与外磁场完全抵消,从而内部的磁感应强度为零。
也就是说,磁力线完全被排斥在超导体外面。
超导现象的应用:(1)各种金属导体中,银的导电性能是最好的,但还是有电阻存在。
20世纪初,科学家发现,某些物质在很低的温度时,如铝在1.39K(-271.76℃)以下,铅在7.20K(-265.95℃)以下,电阻就变成了零。
这就是超导现象,用具有这种性能的材料可以做成超导材料。
电阻的关键参数电阻是电路中常见的元件之一,它是控制电流流动的关键参数。
电阻的关键参数包括电阻值、功率、温度系数和精度等。
一、电阻值电阻值是电阻的基本特征之一,它衡量了电阻对电流的阻碍程度。
电阻值的单位是欧姆(Ω),表示电流通过电阻时所遇到的阻力。
电阻值越大,电流通过时受到的阻碍越大。
常见的电阻值有几欧姆到几兆欧姆不等。
二、功率功率是电阻能够耗散的电能的量度,也是电阻的另一个重要参数。
功率的单位是瓦特(W),表示单位时间内电能的转化速率。
功率越大,电阻耗散的能量越多。
需要注意的是,功率过大会导致电阻过热,甚至损坏,因此选择合适的功率电阻很重要。
三、温度系数温度系数是衡量电阻对温度变化的敏感程度的参数。
它表示单位温度变化时电阻值的变化量。
温度系数通常用ppm/℃(百万分之一/摄氏度)表示,较小的温度系数意味着电阻对温度变化的响应较小。
在选择电阻时,需要根据应用环境的温度变化来确定合适的温度系数。
四、精度精度是指电阻实际值与标称值之间的偏差,用百分比表示。
精度越高,电阻的实际值与标称值之间的偏差越小。
常见的电阻精度有1%、5%等。
在需要高精度的电路中,选择精度较高的电阻是必要的。
电阻的关键参数对电路的性能和稳定性有重要影响。
在实际应用中,根据电路需求选择合适的电阻参数至关重要。
下面将分别对这些参数的应用进行介绍。
一、电阻值的应用电阻值的选择应根据电路的要求来确定。
当需要限制电流大小时,选择较大的电阻值;当需要限制电压降时,选择较小的电阻值。
此外,电阻值还会影响电路的功耗和信号衰减等。
二、功率的应用功率参数是选择电阻的重要依据之一。
在电路设计中,需要根据电路的功率需求来选择合适的功率电阻。
功率过大会导致电阻过热,功率过小则不能满足电路的功率需求。
因此,根据具体的应用场景选择适当的功率电阻是十分重要的。
三、温度系数的应用温度系数决定了电阻在温度变化时的稳定性。
在一些对温度变化敏感的应用中,需要选择具有较小温度系数的电阻,以保证电路的稳定性。
电阻的概念和电阻的计算电阻是电流在电路中流动时受到的阻碍。
它是指物质对电流流动的阻力大小。
本文将介绍电阻的概念和电阻的计算方法。
一、电阻的概念电阻是物质对电流流动的阻力大小,它是电阻器的重要特性。
电阻的单位是欧姆(Ω)。
电阻的大小与物质本身的性质以及电路的结构有关。
一般而言,导体的电阻较小,而绝缘体的电阻较大。
在电路中,我们常使用电阻器来调节电流的大小。
电阻器的作用是通过改变电阻的大小来控制电流的大小。
电阻器通常由一个或多个电阻元件组成,可以通过调节电阻元件的位置或替换不同大小的电阻元件来改变电阻的大小。
二、电阻的计算方法电阻的计算方法主要有以下几种:1. 串联电阻的计算方法当电阻器依次连接在电路的同一分支上时,它们的电阻值相加即为总电阻。
即:总电阻 = 电阻1 + 电阻2 + 电阻3 + ...例如,如果有三个电阻分别为10Ω、20Ω和30Ω,串联连接在电路中,那么它们的总电阻为:总电阻 = 10Ω + 20Ω + 30Ω = 60Ω2. 并联电阻的计算方法当电阻器同时连接在电路的同一节点上时,它们的倒数之和再求倒数即为总电阻的倒数。
即:1 / 总电阻 = 1 / 电阻1 + 1 / 电阻2 + 1 / 电阻3 + ...例如,如果有三个电阻分别为10Ω、20Ω和30Ω,并联连接在电路中,那么它们的总电阻为:1 / 总电阻= 1 / 10Ω + 1 / 20Ω + 1 / 30Ω = 1 / (1/10 + 1/20 + 1/30) =5.45Ω因此,总电阻约为5.45Ω。
3. 复杂电路的电阻计算方法对于复杂的电路,我们可以根据串联和并联电阻的计算方法,分步计算得到总电阻。
首先计算相邻的串联电阻,然后将其替换为一个等效电阻,再计算与其并联的电阻,通过逐步替换和计算,最终得到总电阻。
总结:电阻是电流流动受到的阻碍,它的大小与物质性质和电路结构有关。
电阻的计算方法包括串联电阻的相加和并联电阻的倒数之和。
定义在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻是所有电子电路中使用最多的元件。
公式电阻计算的公式串联:R=R1+R2+R3+……+R n 并联:1/R=1/R1+1/R2+……+1/R n 定义式:R=U/I决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)单位导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,音译成拼音读作ōu mī ga ),1Ω=1V/A。
比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。
电阻器简称电阻(Resistor,通常用“R”表示)是所有电子电路中使用最多的电阻[1]元件。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。
KΩ(千欧), MΩ(兆欧),他们的换算关系是:1TΩ=1000GΩ;1G Ω=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千进率)控制电阻大小的因素电阻元件的电阻值大小一般与温度有关,还与导体长度、粗细、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。
如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m, s为面积,单位为m²。
可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。
电阻的基础知识目录一、电阻的基本概念 (2)1.1 电阻的定义 (3)1.2 电阻的单位 (3)1.3 电阻的物理特性 (4)二、电阻的分类 (5)2.1 固定电阻与可变电阻 (6)2.2 线性电阻与非线性电阻 (7)2.3 热敏电阻与敏感电阻 (8)三、电阻的表示方法 (8)3.1 负载电阻与电源内阻 (9)3.2 电阻的串联与并联 (11)3.3 电阻的星形连接与三角形连接 (12)四、电阻的计算 (13)4.1 常见电阻值的计算 (14)4.2 使用万用表测量电阻 (14)4.3 电阻的精度与误差分析 (16)五、电阻在电路中的作用 (17)5.1 分压与分流作用 (18)5.2 限制电流与保护电路元件 (18)5.3 调节电路参数与信号处理 (20)六、特殊电阻介绍 (21)6.1 碳膜电阻 (22)6.2 金属膜电阻 (23)6.3 环氧树脂电阻 (25)6.4 氧化锌电阻 (26)七、电阻的发展趋势与挑战 (27)7.1 新型电阻材料的研究进展 (29)7.2 电阻的微型化与集成化 (30)7.3 环境友好型电阻的研发与应用 (31)八、相关标准与规范 (33)8.1 国家标准与行业标准 (34)8.2 国际标准化组织与规范 (35)8.3 行业认可的技术规范与认证 (36)一、电阻的基本概念电阻是指材料对电流流动的阻碍作用,它是由材料本身的物理属性决定的,与电流的大小、电压的高低以及电路的元件数等因素无关。
电阻的物理量是欧姆(),在国际单位制中,欧姆的定义为:当一伏特电压作用于一欧姆电阻上时,通过该电阻的电流为一安培。
电阻的物理基础可以追溯到材料中的电荷流动,即电子在金属导体中的自由度。
电子由于热运动而处于较高的自由状态,当施加电场时,电子会在电场力的作用下发生定向移动,从而产生电流。
在移动过程中,电子会不断与原子振动(热)和其他电子发生碰撞,这些碰撞会阻碍电荷的流动。
电阻实际上是通过反映这种阻碍过程的。
电阻的基本概念电阻是电子学中一个基本而重要的概念。
它是一种阻碍电流流动的物质,广泛应用于电路中,对电流起着分压、降压、分流等作用。
本文将详细介绍电阻的基本概念,包括电阻的定义、单位、特性、类型、作用、制造材料和应用领域。
1. 电阻的定义电阻的定义是指在一个线性元件中,当电流通过时所遇到的阻力。
这个阻力的大小与电流的强度成正比,与元件两端的电压成正比,而与电流通过的方向无关。
电阻的数学表达式为R=U/I,其中R表示电阻,U表示电压,I表示电流。
2. 电阻的单位电阻的单位是欧姆(ohm),符号为Ω。
此外,常用的电阻单位还有千欧(kΩ)和兆欧(MΩ)。
1兆欧(MΩ)= 1000千欧(kΩ)= 1000000欧姆(Ω)。
3. 电阻的特性电阻的主要特性是阻值稳定,噪声低,体积小,可靠性高。
其中,阻值是指电阻对电流的阻碍作用,它的大小取决于电阻的材料、长度和截面积。
温度对电阻的影响主要表现为温度升高时,电阻的阻值会增加。
此外,电阻的噪声也是其重要特性之一,主要是由于电子在流动过程中受到的随机碰撞所产生的。
4. 电阻的类型电阻的类型很多,常见的有碳膜电阻、金属膜电阻、绕线电阻等。
碳膜电阻是通过在瓷器表面涂覆一层碳膜而制成的;金属膜电阻则是通过在瓷器表面涂覆一层金属膜而制成的;绕线电阻则是通过绕制在绝缘体上的导线构成的。
不同类型的电阻具有不同的特性,适用于不同的电路中。
5. 电阻的作用电阻在电路中起着分压、降压、分流等作用。
在串联电路中,电阻可以分压;在并联电路中,电阻可以降压或分流。
此外,电阻还可以用于调节信号强度、衰减高频信号等。
6. 电阻的制造材料电阻的制造材料有多种,包括陶瓷、玻璃、塑料等。
其中,陶瓷材料因其具有较高的绝缘性能和耐高温性能而被广泛使用。
此外,一些特殊材料如碳膜、金属膜等也被用于制造特定类型的电阻。
7. 电阻的应用领域电阻的应用领域非常广泛,包括电子电路、机械控制、光学等领域。
在电子电路中,电阻被广泛应用于分压、降压、分流等场合;在机械控制中,电阻可以用于控制电流的大小和方向;在光学领域中,一些特殊类型的电阻如光敏电阻等被用于光信号的检测和控制。
电阻定义:物质对电流的阻碍作用就叫该物质的电阻。
电阻计算的公式串联:R=R1+R2+R3+……+R n并联:1/R=1/R1+1/R2+……+1/R n定义式:R=U/I决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)电阻的单位是欧姆(ohm),简称欧电阻元件的电阻值大小一般与温度、导体长度、粗细、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
作用主要职能就是阻碍电流流过,应用于限流、分流、降压、分压、负载与电容配合作滤波器及阻匹配等.数字电路中功能有上拉电阻和下拉电阻。
一、电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。
如R表示电阻,W表示电位器。
第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。
1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。
1、电阻表示导体对电流的阻碍作用的大小。
(不同的物体电阻一般不同)用符号R表示。
2、电阻的单位:欧姆(Ω) 、千欧、兆欧。
1MΩ=1000KΩ 1KΩ=1000Ω3、如果导体两端的电压是1伏,通过的电流是1安则这段导体的电阻就是1欧姆。
4、导体电阻的大小由导体本身的材料、长度、横截面积决定。
与是否接入电路、与外加电压及通过电流大小等外界因素均无关,所以导体的电阻是导体本身的一种性质。
5、串联电阻:串联电路的总电阻等于各串联电阻之和。
并联电阻:并联电路的总电阻的倒数等于各并联电阻的倒数之和。
6.手电筒的小灯泡,灯丝的电阻为几欧到十几欧。
日常用的白炽灯,灯丝的电阻为几百欧到几千欧。
实验室用的铜线,电阻小于百分之几欧。
电流表的内阻为零点几欧。
电压表的内阻为几千欧左右。
A1.导体对电流的作用叫做电阻,单位是,它的符号是。
A2.电阻是导体本身的一种,它的大小与导体两端的电压和通过的电流大小。
A3.决定电阻大小的因素是导体的、、和。
A4.如果要改变某一导体的电阻,下列方法中无效的是()A.改变导体的长度 B.改变导体的横截面积C.改变导体的材料D.改变导体两端的电压A5.下列说法正确的是()A.短导线的电阻比长导线的电阻小B.粗导线的电阻比细导线的电阻小C.铜导线的电阻比铁导线的电阻小D.同种材料长度相等,粗导线的电阻比细导线的电阻小A6.在做“研究导体的电阻跟哪些因素有关”的实验时,为了便于研究,每次须挑选两根合适的导线,用同一电源,测出通过它们的电流,然后进行比较,最后得出结论。
(1)、该实验采用的实验方法为法。
(2)、为了研究电阻与导体材料有关,应选用两根导线进行比较。
(填代号)(3)、为了研究导体的电阻与导体的长度有关,应选用导线两根导线进行比较。
(4)、为了研究导体的电阻与导体的横截面积有关,应选用导线两根导线进行比较。
(5)、通过对表格中数据的分析,可以得出的结论是。
A7.有一个灯泡,它的电阻是15Ω,把灯泡两端加6V电压时,灯泡能正常工作。
1.1电阻1.1.1电阻的基本知识1.电阻的定义当电流流过导体时,导体对电流的阻力作用称为电阻。
在电路中,起电阻作用的元件称为电阻,它由电阻的主体及其引线构成,用字母“R”表示,其基本单位是欧姆“Ω”。
常用单位有“kΩ”,“MΩ”等。
常用电阻的外形结构及电路符号如图1.1所示。
2.电阻的作用电阻是耗能元件,它吸收电能并把电能转换成其他形式的能量。
在电路中,电阻主要有分压、分流、负载(能量转换)等作用。
图1.1常用电阻的外形结构及电路符号3.电阻的分类按电阻的制作材料来分,可分为:金属膜电阻、碳膜电阻、合成膜电阻等。
按电阻的数值能否变化来分,可分为:固定电阻、可变电阻(电阻值变化范围小)、电位器(电阻值变化范围大)等。
按电阻的用途来分,可分为:高频电阻、高温电阻、光敏电阻、热敏电阻等。
常用电阻的性能、特点如表1.1所示。
表1.1 常用电阻的性能、特点4.电阻的命名方法根据国标GB2470-81,电阻型号的命名由4个部分组成,如图1.2所示。
第一部分第二部分第三部分第四部分││││主称材料分类序号图1.2电阻型号的命名方法其中:第一部分——用字母表示产品的主称;第二部分——用字母表示制作产品的材料;第三部分——用数字或字母表示产品的分类(产品的用途、特点等);第四部分——用数字表示产品的生产序号。
电阻的主称、材料、分类符号及其意义如表1.2,表1.3所示。
表1.2电阻的主称、材料和分类符号的意义表1.3敏感电阻型号命名方法中材料、分类的含义例1.1 RJ21为普通金属膜固定电阻;WX52为高温线绕电位器。
1.1.2电阻的主要性能参数和识别方法1.电阻的主要性能参数(1)标称阻值与允许偏差。
电阻的标称阻值是指电阻上所标注的阻值,是电阻生产的规定值。
电阻的阻值通常是按照国家标准GB247l一8l 《电阻标称阻值系列》中的规定进行生产的。
表1.4所示为通用电阻的标称阻值系列。
电阻的标称阻值为表1.4所列数值的10n倍。
电阻导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。
一、电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。
如R表示电阻,W表示电位器。
第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。
第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。
1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。
第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。
2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。
3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。
4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。
三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。
2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。
允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。
线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、1004、额定电压:由阻值和额定功率换算出的电压。
5、最高工作电压:允许的最大连续工作电压。
在低气压工作时,最高工作电压较低。
6、温度系数:温度每变化1℃所引起的电阻值的相对变化。
温度系数越小,电阻的稳定性越好。
阻值随温度升高而增大的为正温度系数,反之为负温度系数。
7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。
8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。
9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。
四、电阻器阻值标示方法1、直标法:用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
2、文字符号法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。
符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。
表示允许误差的文字符号文字符号 D F G J K M允许偏差 ±0.5% ±1% ±2% ±5% ±10% ±20%3、数码法:在电阻器上用三位数码表示标称值的标志方法。
数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。
偏差通常采用文字符号表示。
4、色标法:用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。
国外电阻大部分采用色标法。
黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9、金-±5%、银-±10%、无色-±20%当电阻为四环时,最后一环必为金色或银色,前两位为有效数字,第三位为乘方数,第四位为偏差。
当电阻为五环时,最后一环与前面四环距离较大。
前三位为有效数字,第四位为乘方数,第五位为偏差。
五、常用电阻器1、电位器电位器是一种机电元件,他靠电刷在电阻体上的滑动,取得与电刷位移成一定关系的输出电压。
1.1 合成碳膜电位器电阻体是用经过研磨的碳黑,石墨,石英等材料涂敷于基体表面而成,该工艺简单,是目前应用最广泛的电位器。
特点是分辩力高耐磨性好,寿命较长。
缺点是电流噪声,非线性大,耐潮性以及阻值稳定性差。
1.2 有机实心电位器有机实心电位器是一种新型电位器,它是用加热塑压的方法,将有机电阻粉压在绝缘体的凹槽内。
有机实心电位器与碳膜电位器相比具有耐热性好、功率大、可靠性高、耐磨性好的优点。
但温度系数大、动噪声大、耐潮性能差、制造工艺复杂、阻值精度较差。
在小型化、高可靠、高耐磨性的电子设备以及交、直流电路中用作调节电压、电流。
1.3 金属玻璃铀电位器用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。
特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,是很有前途的电位器品种,缺点是接触电阻和电流噪声大。
1.4 绕线电位器绕线电位器是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。
绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。
主要用作分压器、变阻器、仪器中调零和工作点等。
1.5 金属膜电位器金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。
特点是分辩力高、耐高温、温度系数小、动噪声小、平滑性好。
1.6 导电塑料电位器用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。
特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。
用于宇宙装置、导弹、飞机雷达天线的伺服系统等。
1.7 带开关的电位器有旋转式开关电位器、推拉式开关电位器、推推开关式电位器1.8 预调式电位器预调式电位器在电路中,一旦调试好,用蜡封住调节位置,在一般情况下不再调节。
1.9 直滑式电位器采用直滑方式改变电阻值。
1.10 双连电位器有异轴双连电位器和同轴双连电位器1.11 无触点电位器无触点电位器消除了机械接触,寿命长、可靠性高,分光电式电位器、磁敏式电位器等。
2、实芯碳质电阻器用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。
特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。
3、绕线电阻器用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。
绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
4、薄膜电阻器用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。
主要如下:4.1 碳膜电阻器将结晶碳沉积在陶瓷棒骨架上制成。
碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。
4.2 金属膜电阻器。
用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。
金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。
在仪器仪表及通讯设备中大量采用。
4.3 金属氧化膜电阻器在绝缘棒上沉积一层金属氧化物。
由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。
4.4 合成膜电阻将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。
由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。
5、金属玻璃铀电阻器将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。
耐潮湿,高温,温度系数小,主要应用于厚膜电路。
6、贴片电阻SMT片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。
体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。
7、敏感电阻敏感电阻是指器件特性对温度,电压,湿度,光照,气体,磁场,压力等作用敏感的电阻器。
敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。
7.1、压敏电阻主要有碳化硅和氧化锌压敏电阻,氧化锌具有更多的优良特性。
7.2、湿敏电阻由感湿层,电极,绝缘体组成,湿敏电阻主要包括氯化锂湿敏电阻,碳湿敏电阻,氧化物湿敏电阻。
氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小,特性重复性不好,受温度影响大。
碳湿敏电阻缺点为低温灵敏度低,阻值受温度影响大,由老化特性,较少使用。
氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。
有氧化锡,镍铁酸盐,等材料。
7.3、光敏电阻光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。
7.4、气敏电阻利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。
7.5、力敏电阻力敏电阻是一种阻值随压力变化而变化的电阻,国外称为压电电阻器。
所谓压力电阻效应即半导体材料的电阻率随机械应力的变化而变化的效应。
可制成各种力矩计,半导体话筒,压力传感器等。
主要品种有硅力敏电阻器,硒碲合金力敏电阻器,相对而言,合金电阻器具有更高灵敏度。
7.6、热敏电阻热敏电阻是敏感元件的一类,其电阻值会随着热敏电阻本体温度的变化呈现出阶跃性的变化,具有半导体特性.热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻)负温度系数热敏电阻(简称NTC热敏电阻)正温度热敏电阻(PTC Thermistor)PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件.通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻.PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时, 它的电阻值随着温度的升高呈阶跃性的增高.PTC热敏电阻根据其材质的不同分为: 陶瓷PTC热敏电阻有机高分子PTC热敏电阻目前大量被使用的PTC热敏电阻种类: 恒温加热用PTC热敏电阻过流保护用PTC热敏电阻空气加热用PTC热敏电阻延时启动用PTC热敏电阻传感器用PTC热敏电阻自动消磁用PTC热敏电阻一般情况下,有机高分子PTC热敏电阻适合过流保护用途,陶瓷PTC热敏电阻可适用于以上所列各种用途.负温度热敏电阻(NTC Thermistor)NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件.通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻.NTC热敏电阻是一种典型具有温度敏感性的半导体电阻,它的电阻值随着温度的升高呈阶跃性的减小.NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的.这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料.温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低.NTC热敏电阻根据其用途的不同分为: 功率型NTC热敏电阻补偿型NTC热敏电阻测温型NTC热敏电阻。