(人教B版)高中数学必修三全册同步ppt课件:3-1-4
- 格式:ppt
- 大小:1.14 MB
- 文档页数:28
3.1.4空间向量的直角坐标运算一、选择题1.已知A (3,4,5),B (0,2,1),O (0,0,0),若OC →=25AB →,则C 的坐标是( )A .(-65,-45,-85)B .(65,-45,-85)C .(-65,-45,85)D .(65,45,85)[答案] A[解析] 设C (a ,b ,c ),∵AB →=(-3,-2,-4) ∴25(-3,-2,-4)=(a ,b ,c ), ∴(a ,b ,c )=⎝⎛⎭⎫-65,-45,-85.故选A.2.与向量a =(1,-3,2)平行的一个向量的坐标为( ) A .(1,3,2)B .(-1,-3,2)C .(-1,3,-2)D .(1,-3,-2) [答案] C[解析] (-1,3,-2)=-a ,与a 共线.3.若a =(1,λ,2),b =(2,-1,2),且a 与b 夹角的余弦为89,则λ=( )A .2B .-2C .-2或255D .2或-255[答案] C[解析] a·b =2-λ+4=6-λ |a |=5+λ2,|b |=9. cos 〈a ,b 〉=a·b |a ||b |=6-λ5+λ2·9=8955λ2+108λ-4=0,解得λ=-2或λ=255. 4.若△ABC 中,∠C =90°,A (1,2,-3k ),B (-2,1,0),C (4,0,-2k ),则k 的值为( ) A.10 B .-10 C .2 5D .±10[答案] D[解析] CB →=(-6,1,2k ),CA →=(-3,2,-k )则CB →·CA →=(-6)×(-3)+2+2k (-k ) =-2k 2+20=0,∴k =±10.5.已知A (3,5,2),B (-1,2,1),把AB →按向量(2,1,1)平移后所得向量是( ) A .(-4,-3,0) B .(-4,-3,-1) C .(-2,-1,0)D .(-2,-2,0)[答案] B[解析] AB →=(-4,-3,-1),而平移后的向量与原向量相等,∴AB →平移后仍为(-4,-3,-1).故选B.6.若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a 1b 1=a 2b 2=a 3b 3是a ∥b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 当a 1b 1=a 2b 2=a 3b 3时,a ∥b ,但是a ∥b ,不一定a 1b 1=a 2b 2=a3b 3成立,如a =(1,0,1),b =(2,0,2).7.正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB .则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45[答案] D[解析] 建立如图所示坐标系由题意设A (1,0,0),B (1,1,0). D 1(0,0,2),A 1(1,0,2).由AD 1→=(-1,0,2),A 1B →=(0,1,-2). ∴cos 〈AB 1→,AD 1→〉=-45·5=-45,∴异面直线A 1B 与AD 1所成角的余弦值为45,故选D.8.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( ) A .1B.15C.35D.75[答案] D[解析] ∵k a +b =(k -1,k,2) 2a -b =(3,2,-2)∴(k a +b )·(2a -b )=3(k -1)+2k -4=0, ∴k =75.9.若两点的坐标是A (3cos α,3sin α,1),B (2cos θ,2sin θ,1),则|AB →|的取值范围是( ) A .[0,5] B .[1,5] C .(1,5)D .[1,25][答案] B [解析] |AB →|=(3cos α-2cos θ)2+(3sin α-2sin θ)2 =13-12cos(α-θ)∈[1,5].10.已知O 为坐标原点,OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( )A.⎝⎛⎭⎫12,34,13 B.⎝⎛⎭⎫12,32,34 C.⎝⎛⎭⎫43,43,83D.⎝⎛⎭⎫43,43,73[答案] C[解析] 设Q (x ,y ,z ),因Q 在OP →上,故有OQ →∥OP →,可得x =λ,y =λ,z =2λ, 则Q (λ,λ,2λ),QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), 所以QA →·QB →=6λ2-16λ+10=6(λ-43)2-23,故当λ=43时,QA →·QB →取最小值.二、填空题11.已知a =(2,-3,0),b =(k,0,3),<a ,b >=120°,则k =________. [答案] -39[解析] ∵2k =13·k 2+9×⎝⎛⎭⎫-12 ∴16k 2=13k 2+13×9∴k 2=39,∴k =±39.∵k <0,∴k =-39.12.已知点A 、B 、C 的坐标分别为(0,1,0)、(-1,0,-1)、(2,1,1),点P 的坐标为(x,0,z ),若PA →⊥AB →,PA →⊥AC →,则P 点的坐标为______________.[答案] (-1,0,2)[解析] PA →=(-x,1,-z ),AB →=(-1,-1,-1),AC →=(2,0,1), ∴⎩⎪⎨⎪⎧x -1+z =0,-2x -z =0,∴⎩⎪⎨⎪⎧x =-1z =2,∴P (-1,0,2).13.已知A 、B 、C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),AP →=12(AB →-AC →),则点P 的坐标是________.[答案] (5,12,0)[解析] ∵CB →=(6,3,-4),设P (a ,b ,c )则(a -2,b +1,c -2)=(3,32,-2),∴a =5,b =12,c =0,∴P (5,12,0).14.已知向量a =(2,-1,2),则与a 共线且a ·x =-18的向量x =________. [答案] x =(-4,2,-4)[解析] 设x =(x ,y ,z ),又a·x =-18, ∴2x -y +2z =-18①又∵a ∥x ,∴x =2λ,y =-λ,z =2λ② 由①②知:x =-4,y =2,z =-4, ∴x =(-4,2,-4). 三、解答题15.已知A 、B 、C 三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求满足下列条件的P 点坐标.(1)OP →=12(AB →-AC →);(2)AP →=12AB →-AC →).[解析] AB →=(2,6,-3),AC →=(-4,3,1).(1)OP →=12(6,3,-4)=(3,32,-2),则P 点坐标为(3,32,-2).(2)设P (x ,y ,z ),则AP →=(x -2,y +1,z -2).又∵12(AB →-AC →)=AP →=(3,32,-2),∴x =5,y =12z =0.故P 点坐标为(5,12,0).16.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)设|c |=3,c ∥BC →,求c . (2)求a 与b 的夹角.(3)若k a +b 与k a -2b 互相垂直,求k . [解析] (1)∵c ∥BC →,BC →=(-2,-1,2). 设c =(-2λ,-λ,2λ),∴|c |=(-2λ)2+(-λ)2+(2λ)2=3|λ|=3, ∴λ=±1.∴c =(-2,-1,2)或c =(2,1,-2). (2)a =AB →=(-1+2,1-0,2-2)=(1,1,0), b =AC →=(-3+2,0-0,4-2)=(-1,0,2). ∴cos<a ,b >=a·b|a|·|b|=(1,1,0)·(-1,0,2)2×5=-1010.∴a 和b 的夹角为<a ,b >=π-arccos1010. (3)k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4). 又(k a +b )⊥(k a -2b ),则k (a +b )·(k a -2b )=0, ∴(k -1,k,2)·(k +2,k ,-4)=k 2+k -2+k 2-8=0, ∴k =2或k =-52.17.正四棱柱AC 1中,底面ABCD 是边长为4的正方形,A 1C 1与B 1D 1交于点N ,BC 1与B 1C 交于点M ,且AM ⊥BN ,建立空间直角坐标系.(1)求AA 1的长; (2)求<BN →,AD 1→>;(3)对于n 个向量a 1,a 2,…,a n ,如果存在不全为零的n 个实数λ1,λ2,…,λn ,使得λ1a 1+λ2a 2+…+λn a n =0成立,则这n 个向量a 1,a 2,…,a n 叫做线性相关,不是线性相关的向量叫线性无关,判断AM →,BN →,CD →是否线性相关,并说明理由.[解析] (1)以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AA 1的长为a ,则B (4,4,0),N (2,2,a ),BN →=(-2,-2,a ),A (4,0,0),M (2,4,a 2),AM →=(-2,4,a 2),由BN →⊥AM →得BN →·AM →=0,即a =2 2. (2)BN →=(-2,-2,22),AD 1→=(-4,0,22), cos 〈BN →,AD 1→〉=BN →·AD 1→|BN →||AD 1→|=63,〈BN →,AD 1→〉=arccos 63.(3)由AM →=(-2,4,2),BN →=(-2,-2,22),CD →=(0,-4,0), λ1(-2,4,2)+λ2(-2,-2,22)+λ3(0,-4,0)=(0,0,0) 得λ1=λ2=λ3=0,则AM →,BN →,CD →线性无关.18.如图所示,AB 和CD 是两条异面直线,BD 是它们的公垂线,AB =CD =a ,点M ,N 分别是BD ,AC 的中点.求证:MN ⊥BD .[证明]由点M ,N 分别为BD ,AC 的中点可知MN →=12(MA →+MC →)=12(MB →+BA →+MD →+DC →), ∵MB →+MD →=0, ∴MN →·BD →=12(BA →+DC →)·BD →=12(BA →·BD →+DC →·BD →), ∵BA →⊥BD →,DC →⊥BD →, ∴BA →·BD →=0,DC →·BD →=0. ∴MN →·BD →=0, ∴MN ⊥BD .。